Content deleted Content added
stale tag, most specific formulas have inline footnotes, and general references do suffice for most of this |
Citation bot (talk | contribs) Added issue. | Use this bot. Report bugs. | Suggested by Dominic3203 | Linked from User:Mathbot/Most_linked_math_articles | #UCB_webform_linked 640/1913 |
||
(36 intermediate revisions by 29 users not shown) | |||
Line 2:
{{short description|Arithmetic function related to the divisors of an integer}}
[[Image:Divisor.svg|thumb|right|Divisor function ''σ''<sub>0</sub>(''n'') up to ''n'' = 250]]
[[Image:Sigma function.svg|thumb|right|Sigma function ''σ''<sub>1</sub>(''n'') up to ''n'' = 250]]
[[Image:Divisor square.svg|thumb|right|Sum of the squares of divisors, ''σ''<sub>2</sub>(''n''), up to ''n'' = 250]]
[[Image:Divisor cube.svg|thumb|right|Sum of cubes of divisors, ''σ''<sub>3</sub>(''n'') up to ''n'' = 250]]
In [[mathematics]], and specifically in [[number theory]], a '''divisor function''' is an [[arithmetic function]] related to the [[divisor]]s of an [[integer]]. When referred to as ''the'' divisor function, it counts the ''number of divisors of an integer'' (including 1 and the number itself). It appears in a number of remarkable identities, including relationships on the [[Riemann zeta function]] and the [[Eisenstein series]] of [[modular form]]s. Divisor functions were studied by [[Ramanujan]], who gave a number of important [[Modular arithmetic|congruences]] and [[identity (mathematics)|identities]]; these are treated separately in the article [[Ramanujan's sum]].
Line 11:
==Definition==
The '''sum of positive divisors function''' ''σ''<sub>''
:<math>\
where <math>{d\mid n}</math> is shorthand for "''d'' [[divides]] ''n''".
The notations ''d''(''n''), ''ν''(''n'') and ''τ''(''n'') (for the German ''Teiler'' = divisors) are also used to denote ''σ''<sub>0</sub>(''n''), or the '''number-of-divisors function'''<ref name="Long 1972 46">{{harvtxt|Long|1972|p=46}}</ref><ref>{{harvtxt|Pettofrezzo|Byrkit|1970|p=63}}</ref> ({{OEIS2C|id=A000005}}). When ''
The '''[[aliquot sum]]''' ''s''(''n'') of ''n'' is the sum of the [[proper divisor]]s (that is, the divisors excluding ''n'' itself, {{OEIS2C|id=A001065}}), and equals ''σ''<sub>1</sub>(''n'') − ''n''; the [[aliquot sequence]] of ''n'' is formed by repeatedly applying the aliquot sum function.
==Example==
For example, ''σ''<sub>0</sub>(12) is the number of the divisors of 12:
: <math>
\begin{align}
\
& = 1 + 1 + 1 + 1 + 1 + 1 = 6,
\end{align}
</math>
while ''σ''<sub>1</sub>(12) is the sum of all the divisors:
: <math>
\begin{align}
\
& = 1 + 2 + 3 + 4 + 6 + 12 = 28,
\end{align}
Line 45:
s(12) & = 1^1 + 2^1 + 3^1 + 4^1 + 6^1 \\
& = 1 + 2 + 3 + 4 + 6 = 16.
\end{align}
</math>
''σ''<sub>−1</sub>(''n'') is sometimes called the [[abundancy index]] of ''n'', and we have:
: <math>
\begin{align}
\sigma_{-1}(12) & = 1^{-1} + 2^{-1} + 3^{-1} + 4^{-1} + 6^{-1} + 12^{-1} \\[6pt]
& = \tfrac11 + \tfrac12 + \tfrac13 + \tfrac14 + \tfrac16 + \tfrac1{12} \\[6pt]
& = \tfrac{12}{12} + \tfrac6{12} + \tfrac4{12} + \tfrac3{12} + \tfrac2{12} + \tfrac1{12} \\[6pt]
& = \tfrac{12 + 6 + 4 + 3 + 2 + 1}{12} = \tfrac{28}{12} = \tfrac73 = \tfrac{\sigma_1(12)}{12}
\end{align}
</math>
==Table of values==
The cases ''x'' = 2 to 5 are listed in {{OEIS2C|A001157}}
{| class="wikitable" style="text-align:
! ''n'' !! prime factorization !!
|-
| 1||style='text-align:center;'| 1|| 1|| 1|| 1|| 1|| 1
Line 172 ⟶ 183:
:<math> \sigma_0(p_n\#) = 2^n </math>
since ''n'' prime factors allow a sequence of binary selection (<math>p_{i}</math> or 1) from ''n'' terms for each proper divisor formed. However, these are not in general the smallest numbers whose number of divisors is a [[power of two]]; instead, the smallest such number may be obtained by multiplying together the first ''n'' [[Fermi–Dirac prime]]s, prime powers whose exponent is a power of two.<ref>{{citation
| last = Ramanujan | first = S. | author-link = Srinivasa Ramanujan
| doi = 10.1112/plms/s2_14.1.347
| issue = 1
| journal = Proceedings of the London Mathematical Society
| pages = 347–409
| title = Highly Composite Numbers
| volume = s2-14
| year = 1915| url = https://zenodo.org/record/1433496 }}; see section 47, pp. 405–406, reproduced in ''Collected Papers of Srinivasa Ramanujan'', Cambridge Univ. Press, 2015, [https://books.google.com/books?id=h1G2CgAAQBAJ&pg=PA124 pp. 124–125]</ref>
Clearly, <math>1 < \sigma_0(n) < n</math> for all <math>n > 2</math>, and <math>\sigma_x(n) > n </math> for all <math>n > 1</math>, <math>x > 0</math> .
The divisor function is [[multiplicative function|multiplicative]]
:<math>\gcd(a, b)=1 \Longrightarrow \sigma_x(ab)=\sigma_x(a)\sigma_x(b).</math>
Line 192 ⟶ 211:
:<math>\sigma_x(n) = \prod_{i=1}^{r} \frac{p_{i}^{(a_{i}+1)x}-1}{p_{i}^x-1}.</math>
When ''x'' = 0,
:<math>\sigma_0(n)=\prod_{i=1}^r (a_i+1).</math>
This result can be directly deduced from the fact that all divisors of <math>n</math> are uniquely determined by the distinct tuples <math>(x_1, x_2, ..., x_i, ..., x_r)</math> of integers with <math>0 \le x_i \le a_i</math> (i.e. <math>a_i+1</math> independent choices for each <math>x_i</math>).
For example, if ''n'' is 24, there are two prime factors (''p<sub>1</sub>'' is 2; ''p<sub>2</sub>'' is 3); noting that 24 is the product of 2<sup>3</sup>×3<sup>1</sup>, ''a''<sub>1</sub> is 3 and ''a''<sub>2</sub> is 1. Thus we can calculate <math>\sigma_0(24)</math> as so:▼
▲For example, if ''n'' is 24, there are two prime factors (''p''<sub>1</sub>
: <math>\sigma_0(24) = \prod_{i=1}^{2} (a_i+1) = (3 + 1)(1 + 1) = 4 \cdot 2 = 8.</math>
Line 203 ⟶ 224:
===Other properties and identities===
[[Euler]] proved the remarkable recurrence:<ref>{{Cite arXiv |eprint = math/0411587|last1 = Euler|first1 = Leonhard|title = An observation on the sums of divisors|last2 = Bell|first2 = Jordan|year = 2004}}</ref><ref>
:<math>\begin{align}
\
&= \sum_{i\in\
\end{align}</math>
where
For a non-square integer, ''n'', every divisor, ''d'', of ''n'' is paired with divisor ''n''/''d'' of ''n'' and <math>\sigma_{0}(n)</math> is even; for a square integer, one divisor (namely <math>\sqrt n</math>) is not paired with a distinct divisor and <math>\sigma_{0}(n)</math> is odd. Similarly, the number <math>\sigma_{1}(n)</math> is odd if and only if ''n'' is a square or twice a square.{{
We also note ''s''(''n'') = ''σ''(''n'') − ''n''. Here ''s''(''n'') denotes the sum of the ''proper'' divisors of ''n'', that is, the divisors of ''n'' excluding ''n'' itself. This function is
If {{mvar|n}} is a power of 2
As an example, for two
:<math>n =
Then
:<math>\sigma(n) = (p+1)(q+1) = n + 1 + (p+q), </math>
:<math>\varphi(n) = (p-1)(q-1) = n + 1 - (p+q), </math>
Line 234 ⟶ 255:
where <math>\varphi(n)</math> is [[Euler phi|Euler's totient function]].
Then, the roots of
:<math>(x-p)(x-q) = x^2 - (p+q)x + n = x^2 - [(\sigma(n) - \varphi(n))/2]x + [(\sigma(n) + \varphi(n))/2 - 1] = 0 </math>
:<math>p = (\sigma(n) - \varphi(n))/4 - \sqrt{[(\sigma(n) - \varphi(n))/4]^2 - [(\sigma(n) + \varphi(n))/2 - 1]}, </math>
:<math>q = (\sigma(n) - \varphi(n))/4 + \sqrt{[(\sigma(n) - \varphi(n))/4]^2 - [(\sigma(n) + \varphi(n))/2 - 1]}. </math>
Also, knowing {{mvar|n}} and either <math>\sigma(n)</math> or <math>\varphi(n)</math>,
In 1984, [[Roger Heath-Brown]] proved that the equality
Line 249 ⟶ 270:
:<math>\sigma_0(n) = \sigma_0(n + 1)</math>
is true for
=== Dirichlet convolutions ===
{{Main article|Dirichlet convolution}}
By definition:<math display="block">\sigma = \operatorname{Id} * \mathbf 1</math>By [[Möbius inversion formula|Möbius inversion]]:<math display="block">\operatorname{Id} = \sigma * \mu </math>
==Series relations==
Line 256 ⟶ 281:
:<math>\sum_{n=1}^\infty \frac{\sigma_{a}(n)}{n^s} = \zeta(s) \zeta(s-a)\quad\text{for}\quad s>1,s>a+1,</math>
: <math>\sum_{n=1}^\infty \frac{d(n)}{n^s} = \zeta^2(s)\quad\text{for}\quad s>1,</math>
Line 268 ⟶ 293:
A [[Lambert series]] involving the divisor function is: {{sfnp|Hardy|Wright|2008|pp=338-341|loc=§17.10}}
:<math>\sum_{n=1}^\infty q^n \sigma_a(n) = \sum_{n=1}^\infty \sum_{j=1}^\infty n^a q^{j\,n} = \sum_{n=1}^\infty \frac{n^a q^n}{1-q^n} = \sum_{n=1}^\infty \operatorname{Li}_{-a}(q^n)</math>
for arbitrary [[complex number|complex]] |''q''| ≤ 1 and ''a'' (<math>\operatorname{Li}</math> is the [[polylogarithm]]). This summation also appears as the [[Eisenstein series#Fourier series|Fourier series of the Eisenstein series]] and the [[Weierstrass elliptic functions#Invariants|invariants of the Weierstrass elliptic functions]].
For <math>k>0</math>,
:<math>\sigma_k(n) = \zeta(k+1)n^k\sum_{m=1}^\infty \frac {c_m(n)}{m^{k+1}}.</math>
The computation of the first terms of <math>c_m(n)</math> shows its oscillations around the "average value" <math>\zeta(k+1)n^k</math>:
Line 296 ⟶ 321:
</math>
where lim sup is the [[limit superior]]. This result is '''[[Thomas Hakon Grönwall|Grönwall]]'s theorem''', published in 1913 {{harv|Grönwall|1913}}. His proof uses [[Mertens' theorems|Mertens'
:<math>\lim_{n\to\infty}\frac{1}{\log n}\prod_{p\le n}\frac{p}{p-1}=e^\gamma,</math>
Line 302 ⟶ 327:
where ''p'' denotes a prime.
In 1915, Ramanujan proved that under the assumption of the [[Riemann hypothesis]],
:<math>\ \sigma(n) < e^\gamma n \log \log n </math> (
holds for all sufficiently large ''n'' {{harv|Ramanujan|1997}}. The largest known value that violates the inequality is ''n''=[[5040 (number)|5040]]. In 1984,
Robin also proved, unconditionally, that the inequality:
Line 311 ⟶ 336:
A related bound was given by [[Jeffrey Lagarias]] in 2002, who proved that the Riemann hypothesis is equivalent to the statement that:
:<math> \sigma(n) < H_n +
for every [[natural number]] ''n'' > 1, where <math>H_n</math> is the ''n''th [[harmonic number]], {{harv|Lagarias|2002}}.
Line 330 ⟶ 355:
* {{Citation | last1=Caveney | first1=Geoffrey | last2=Nicolas | first2=Jean-Louis|author2-link=Jean-Louis Nicolas | last3=Sondow | first3=Jonathan | title=Robin's theorem, primes, and a new elementary reformulation of the Riemann Hypothesis | url=http://www.integers-ejcnt.org/l33/l33.pdf | year=2011 | journal=INTEGERS: The Electronic Journal of Combinatorial Number Theory | volume=11 | pages=A33| bibcode=2011arXiv1110.5078C | arxiv=1110.5078 }}
*{{Citation | last1=Choie | first1=YoungJu | author1-link= YoungJu Choie | last2=Lichiardopol | first2=Nicolas | last3=Moree | first3=Pieter | author3-link=Pieter Moree | last4=Solé | first4=Patrick | title=On Robin's criterion for the Riemann hypothesis | mr=2394891 | zbl=1163.11059 | arxiv=math.NT/0604314 | year=2007 | journal=Journal de théorie des nombres de Bordeaux | issn=1246-7405 | volume=19 | issue=2 | pages=357–372 | doi=10.5802/jtnb.591| s2cid=3207238 }}
*{{citation
* {{Citation | last1=Grönwall | first1=Thomas Hakon | author1-link=Thomas Hakon Grönwall | title=Some asymptotic expressions in the theory of numbers | year=1913 | journal=Transactions of the American Mathematical Society | volume=14 | pages=113–122 | doi=10.1090/S0002-9947-1913-1500940-6| doi-access=free }}▼
| last1 = Gioia | first1 = A. A.
| last2 = Vaidya | first2 = A. M.
| doi = 10.2307/2315280
| journal = [[The American Mathematical Monthly]]
| jstor = 2315280
| mr = 220659
| pages = 969–973
| title = Amicable numbers with opposite parity
| volume = 74
| year = 1967| issue = 8
}}
▲* {{Citation | last1=Grönwall | first1=Thomas Hakon | author1-link=Thomas Hakon Grönwall | title=Some asymptotic expressions in the theory of numbers | year=1913 | journal=Transactions of the American Mathematical Society | volume=14 | issue=1 | pages=113–122 | doi=10.1090/S0002-9947-1913-1500940-6| doi-access=free }}
* {{Citation | last1=Hardy | first1=G. H. | author1-link=G. H. Hardy | last2=Wright | first2=E. M. | author2-link=E. M. Wright | edition=6th | others=Revised by [[Roger Heath-Brown|D. R. Heath-Brown]] and [[Joseph H. Silverman|J. H. Silverman]]. Foreword by [[Andrew Wiles]]. | title=An Introduction to the Theory of Numbers | publisher=[[Oxford University Press]] | ___location=Oxford | isbn=978-0-19-921986-5 | mr=2445243 | zbl=1159.11001 | year=2008 | orig-year=1938}}
* {{citation | last=Ivić | first=Aleksandar | title=The Riemann zeta-function. The theory of the Riemann zeta-function with applications | series=A Wiley-Interscience Publication | ___location=New York etc. | publisher=John Wiley & Sons | year=1985 | isbn=0-471-80634-X | zbl=0556.10026 | pages=385–440 }}
|