Content deleted Content added
chi notation; rm unsourced and dubious claim about computer science |
m Fixed punctuation |
||
(36 intermediate revisions by 22 users not shown) | |||
Line 1:
{{
{{About|the 0
{{More footnotes|date=December 2009}}
{{Use American English|date = March 2019}}
[[Image:Indicator function illustration.png|right|thumb|A three-dimensional plot of an indicator function, shown over a square two-dimensional ___domain (set {{mvar|X}}): the "raised" portion overlays those two-dimensional points which are members of the "indicated" subset ({{mvar|A}}).]]
In [[mathematics]], an '''indicator function''' or a '''characteristic function''' of a [[subset]] of a [[Set (mathematics)|set]] is a [[Function (mathematics)|function]] that maps elements of the subset to one, and all other elements to zero. That is, if {{mvar|A}} is a subset of
The
<math display="block">\mathbf{1}_{A}(x) = \left[\ x\in A\ \right].</math>
==Definition==▼
The indicator function of a subset {{mvar|A}} of a set {{mvar|X}} is a function▼
For example, the [[Dirichlet function]] is the indicator function of the [[rational number]]s as a subset of the [[real number]]s.
▲==Definition==
defined as▼
▲
<math display="block" qid="Q371983">\operatorname\mathbf{1}_A\!( x ) =
\begin{cases}
1
0
\end{cases}
</math>
The [[Iverson bracket]] provides the equivalent notation
The function <math>\mathbf{1}_A</math> is sometimes denoted
The [[Greek alphabet|Greek letter]] }} or even just {{mvar|A}}.{{efn| The set of all indicator functions on {{mvar|X}} can be identified with the set operator <math>\mathcal{P}(X),</math> }} ==Notation and terminology==
Line 33 ⟶ 37:
A related concept in [[statistics]] is that of a [[dummy variable (statistics)|dummy variable]]. (This must not be confused with "dummy variables" as that term is usually used in mathematics, also called a [[free variables and bound variables|bound variable]].)
The term "[[characteristic function (probability theory)|characteristic function]]" has an unrelated meaning in [[probability theory|classic probability theory]]. For this reason, [[List of probabilists|traditional probabilists]] use the term '''indicator function''' for the function defined here almost exclusively, while mathematicians in other fields are more likely to use the term ''characteristic function''
In [[fuzzy logic]] and [[Many-valued logic|modern many-valued logic]], predicates are the [[characteristic function (probability theory)|characteristic functions]] of a [[probability distribution]]. That is, the strict true/false valuation of the predicate is replaced by a quantity interpreted as the degree of truth.
==Basic properties==
The ''indicator'' or ''characteristic'' [[function (mathematics)|function]] of a subset {{mvar|A}} of some set {{mvar|X}} [[Map (mathematics)|maps]] elements of {{mvar|X}} to the [[
This mapping is [[surjective]] only when {{mvar|A}} is a non-empty [[proper subset]] of {{mvar|X}}. If
If <math>A</math> and <math>B</math> are two subsets of <math>X,</math> then
<math display=block>\begin{align}
\mathbf{1}_{A\cup B}(x) ~&=~ \max\bigl\{\mathbf{1}_A(x),\ \mathbf{1}_B(x)\bigr\} ~=~ \mathbf{1}_A(x) + \mathbf{1}_B(x) - \mathbf{1}_A(x) \cdot \mathbf{1}_B(x)\,,
\end{align}</math>
▲:<math>\mathbf{1}_{A\cup B} = \max\{{\mathbf{1}_A,\mathbf{1}_B}\} = \mathbf{1}_A + \mathbf{1}_B - \mathbf{1}_A \cdot\mathbf{1}_B,</math>
More generally, suppose <math>A_1, \dotsc, A_n</math> is a collection of subsets of {{mvar|X}}. For any <math>x \in X:</math>
is
Expanding the product on the left hand side,
where <math>|F|</math> is the [[cardinality]] of {{mvar|F}}. This is one form of the principle of [[inclusion-exclusion]].
As suggested by the previous example, the indicator function is a useful notational device in [[combinatorics]]. The notation is used in other places as well, for instance in [[probability theory]]: if {{mvar|X}} is a [[probability space]] with probability measure <math>\
This identity is used in a simple proof of [[Markov's inequality]].
Line 73 ⟶ 78:
==Mean, variance and covariance==
Given a [[probability space]] <math>\textstyle (\Omega, \mathcal F, \operatorname{P})</math> with <math>A \in \mathcal F,</math>
;[[Mean]]: <math>\ \operatorname\mathbb{E}(\mathbf{1}_A (\omega)) = \operatorname\mathbb{P}(A)\ </math>
;[[Variance]]: <math>\ \operatorname{Var}(\mathbf{1}_A (\omega)) = \operatorname\mathbb{P}(A)(1 - \operatorname\mathbb{P}(A))
;[[Covariance]]: <math>\ \operatorname{Cov}(\mathbf{1}_A (\omega), \mathbf{1}_B (\omega)) = \operatorname\mathbb{P}(A \cap B) - \operatorname\mathbb{P}(A) \operatorname\mathbb{P}(B)
==Characteristic function in recursion theory, Gödel's and Kleene's representing function==
[[Kurt Gödel]] described the ''representing function'' in his 1934 paper "On undecidable propositions of formal mathematical systems" (the symbol "{{math|¬}}" indicates logical inversion, i.e. "NOT"):<ref name=Martin-1965>{{cite book |pages=41–74 |editor-link=Martin Davis (mathematician) |editor-first=Martin |editor-last=Davis |year=1965 |title=The Undecidable |publisher=Raven Press Books |place=New York, NY}}</ref>{{rp|page=42}}
{{blockquote|1=There shall correspond to each class or relation {{mvar|R}} a representing function <math>\phi(x_1, \ldots x_n) = 0</math> if <math>R(x_1,\ldots x_n)</math> and <math>\phi(x_1,\ldots x_n) = 1</math> if <math>\neg R(x_1,\ldots x_n).</math>}}
[[Stephen Kleene|Kleene]] (1952)<ref>{{cite book |last=Kleene |first=Stephen |author-link=Stephen Kleene |year=1971 |orig-year=1952 |title=Introduction to Metamathematics |page=227 |publisher=Wolters-Noordhoff Publishing and North Holland Publishing Company |___location=Netherlands |edition=Sixth reprint, with corrections}}</ref> offers up the same definition in the context of the [[primitive recursive function]]s as a function φ of a predicate P takes on values 0 if the predicate is true and 1 if the predicate is false.▼
▲[[Stephen Kleene|Kleene]]
For example, because the product of characteristic functions φ<sub>1</sub>*φ<sub>2</sub>* ... *φ<sub>n</sub> = 0 whenever any one of the functions equals 0, it plays the role of logical OR: IF φ<sub>1</sub> = 0 OR φ<sub>2</sub> = 0 OR ... OR φ<sub>n</sub> = 0 THEN their product is 0. What appears to the modern reader as the representing function's logical inversion, i.e. the representing function is 0 when the function {{mvar|R}} is "true" or satisfied", plays a useful role in Kleene's definition of the logical functions OR, AND, and IMPLY (p. 228), the bounded- (p. 228) and unbounded- (p. 279 ff) [[mu operator]]s (Kleene (1952)) and the CASE function (p. 229).▼
▲For example, because the product of characteristic functions
==Characteristic function in fuzzy set theory==
In classical mathematics, characteristic functions of sets only take values {{math|1}} (members) or {{math|0}} (non-members). In ''[[fuzzy set theory]]'', characteristic functions are generalized to take value in the real unit interval
{{Main|Laplacian of the indicator}}▼
The derivative of the Heaviside step function can be seen as the ''inward normal derivative'' at the ''boundary'' of the ___domain given by the positive half-line. In higher dimensions, the derivative naturally generalises to the inward normal derivative, while the Heaviside step function naturally generalises to the indicator function of some ___domain {{mvar|D}}. The surface of {{mvar|D}} will be denoted by {{mvar|S}}. Proceeding, it can be derived that the [[Laplacian of the indicator#Dirac surface delta function|inward normal derivative of the indicator]] gives rise to a 'surface delta function', which can be indicated by {{math|''δ''<sub>''S''</sub>('''''x''''')}}:▼
==Smoothness==
:<math>\delta_S(\mathbf{x}) = -\mathbf{n}_x \cdot \nabla_x\mathbf{1}_{\mathbf{x}\in D}</math>▼
In general, the indicator function of a set is not smooth; it is continuous if and only if its [[support (math)|support]] is a [[connected component (topology)|connected component]]. In the [[algebraic geometry]] of [[finite fields]], however, every [[affine variety]] admits a ([[Zariski topology|Zariski]]) continuous indicator function.<ref>{{Cite book|title=Course in Arithmetic|last=Serre|pages=5}}</ref> Given a [[finite set]] of functions <math>f_\alpha \in \mathbb{F}_q\left[\ x_1, \ldots, x_n\right]</math> let <math>V = \bigl\{\ x \in \mathbb{F}_q^n : f_\alpha(x) = 0\ \bigr\}</math> be their vanishing locus. Then, the function <math display="inline">\mathbb{P}(x) = \prod\left(\ 1 - f_\alpha(x)^{q-1}\right)</math> acts as an indicator function for <math>V.</math> If <math>x \in V</math> then <math>\mathbb{P}(x) = 1,</math> otherwise, for some <math>f_\alpha,</math> we have <math>f_\alpha(x) \neq 0</math> which implies that <math>f_\alpha(x)^{q-1} = 1,</math> hence <math>\mathbb{P}(x) = 0.</math>
Although indicator functions are not smooth, they admit [[weak derivative]]s. For example, consider [[Heaviside step function]] <math display="block">H(x) \equiv \operatorname\mathbb{I}\!\bigl(x > 0\bigr)</math> The [[distributional derivative]] of the Heaviside step function is equal to the [[Dirac delta function]], i.e. <math display=block>\frac{\mathrm{d}H(x)}{\mathrm{d}x}= \delta(x)</math>
where ''n'' is the outward [[Normal (geometry)|normal]] of the surface ''S''. This 'surface delta function' has the following property:<ref>{{cite journal |last=Lange |first=Rutger-Jan |year=2012 |title=Potential theory, path integrals and the Laplacian of the indicator |journal=Journal of High Energy Physics |volume=2012 |issue=11 |pages=29–30 |arxiv=1302.0864 |bibcode=2012JHEP...11..032L |doi=10.1007/JHEP11(2012)032|s2cid=56188533 }}</ref>▼
and similarly the distributional derivative of <math display="block">G(x) := \operatorname\mathbb{I}\!\bigl(x < 0\bigr)</math> is <math display=block>\frac{\mathrm{d}G(x)}{\mathrm{d}x} = -\delta(x).</math>
▲
:<math>-\int_{\R^n}f(\mathbf{x})\,\mathbf{n}_x\cdot\nabla_x\mathbf{1}_{\mathbf{x}\in D}\;d^{n}\mathbf{x} = \oint_{S}\,f(\mathbf{\beta})\;d^{n-1}\mathbf{\beta}.</math>▼
▲
▲where
▲
By setting the function
==See also==
{{Div col|colwidth=
* [[Dirac measure]]
* [[Laplacian of the indicator]]
Line 120:
* [[Free variables and bound variables]]
* [[Heaviside step function]]
* [[Identity function]]
* [[Iverson bracket]]
* [[Kronecker delta]], a function that can be viewed as an indicator for the [[Equality (mathematics)|identity relation]]
Line 129 ⟶ 130:
* [[Statistical classification]]
* [[Zero-one loss function]]
*[[Subobject classifier]], a related concept from [[Topos theory|topos theory]].{{div col end}}
==Notes==
{{notelist
==References==
Line 138 ⟶ 139:
==Sources==
{{refbegin|
* {{cite book |last=Folland |first=G.B. |title=Real Analysis: Modern Techniques and Their Applications |publisher=John Wiley & Sons, Inc. |year=1999 |isbn=978-0-471-31716-6 |edition=Second}}
* {{cite book |last1=Cormen |first1=Thomas H. |title=Introduction to Algorithms |title-link=Introduction to Algorithms |last2=Leiserson |first2=Charles E. |last3=Rivest |first3=Ronald L. |last4=Stein |first4=Clifford |publisher=MIT Press and McGraw-Hill |year=2001 |isbn=978-0-262-03293-3 |edition=Second |pages=[https://archive.org/details/introductiontoal00corm_691/page/n116 94]–99 |chapter=Section 5.2: Indicator random variables |author-link=Thomas H. Cormen |author-link2=Charles E. Leiserson |author-link3=Ronald L. Rivest |author-link4=Clifford Stein}}
|