Structure theorem for Gaussian measures: Difference between revisions

Content deleted Content added
ce
carat over o in Satô
 
(8 intermediate revisions by 6 users not shown)
Line 1:
{{Short description|Mathematical theorem}}
In [[mathematics]], the '''structure theorem for Gaussian measures''' shows that the [[abstract Wiener space]] construction is essentially the only way to obtain a [[Strictly positive measure|strictly positive]] [[Gaussian measure]] on a [[separable space|separable]] [[Banach space]]. It was proved in the 1970s by [[Gopinath Kallianpur|Kallianpur]]&ndash;SatoSatô&ndash;Stefan and [[Richard M. Dudley|Dudley]]&ndash;[[Jacob Feldman|Feldman]]&ndash;[[Lucien le Cam|le Cam]].<!-- I don't see those papers cited here. -->
 
There is the earlier result due to H. Satô (1969) <ref>[http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.nmj/1118797795 H. Satô, Gaussian Measure on a Banach Space and Abstract Wiener Measure], 1969.</ref> which proves that "any Gaussian measure on a separable Banach space is an [[abstract Wiener space | abstract Wiener measure]] in the sense of [[Leonard Gross | L. Gross]]". The result by Dudley et al. generalizes this result to the setting of Gaussian measures on a general [[topological vector space]].
 
==Statement of the theorem==
Let ''&gamma;'' be a strictly positive Gaussian measure on a separable Banach space (''E'',&nbsp;||&nbsp;||). Then there exists a separable [[Hilbert space]] (''H'',&nbsp;&lang;&nbsp;,&nbsp;&rang;) and a map ''i''&nbsp;:&nbsp;''H''&nbsp;&rarr;&nbsp;''E'' such that ''i''&nbsp;:&nbsp;''H''&nbsp;&rarr;&nbsp;''E'' is an abstract Wiener space with ''&gamma;''&nbsp;=&nbsp;''i''<sub>&lowast;</sub>(''&gamma;''<sup>''H''</sup>), where ''&gamma;''<sup>''H''</sup> is the [[canonical form|canonical]] Gaussian [[cylinder set measure]] on ''H''.
 
Let ''&gamma;γ'' be a strictly positive Gaussian measure on a separable Banach space (''E'',&nbsp;||&nbsp;||). Then there exists a [[separable [[Hilbert space]] (''H'',&nbsp;&lang;&nbsp;,&nbsp;&rang;) and a map ''i''&nbsp;:&nbsp;''H''&nbsp;&rarr;&nbsp;''E'' such that ''i''&nbsp;:&nbsp;''H''&nbsp;&rarr;&nbsp;''E'' is an abstract Wiener space with ''&gamma;γ''&nbsp;=&nbsp;''i''<sub>&lowast;</sub>(''&gamma;γ''<sup>''H''</sup>), where ''&gamma;γ''<sup>''H''</sup> is the [[canonical form|canonical]] Gaussian [[cylinder set measure]] on ''H''.
{{Reflist}}
 
==References==
 
{{reflist}}
 
* {{cite journal
Line 17 ⟶ 19:
| volume = 93
| year = 1971
| issue = 2 | pages = 390&ndash;408
| issn = 0003-486X
| doi=10.2307/1970780
| jstor = 1970780 | mr=0279272}}
 
{{Analysis in topological vector spaces}}
{{Measure theory}}
{{Banach spaces}}
 
[[Category:ProbabilityBanach theoremsspaces]]
[[Category:Theorems in probability theory]]
[[Category:Theorems in measure theory]]
[[Category:Probability theorems]]