Content deleted Content added
→1 × 1 generic matrix: : the answer was incorrect for the 0-matrix. |
→Definition: minor copyedit |
||
(20 intermediate revisions by 19 users not shown) | |||
Line 1:
{{Short description|For a square matrix, the transpose of the cofactor matrix}}
In [[linear algebra]], the '''adjugate''' or '''classical adjoint''' of a [[square matrix]] {{math|'''A'''}}, {{math|adj('''A''')}}, is the [[transpose]] of its [[cofactor matrix]]
The product of a matrix with its adjugate gives a [[diagonal matrix]] (entries not on the main diagonal are zero) whose diagonal entries are the [[determinant]] of the original matrix:
Line 10:
:<math>\operatorname{adj}(\mathbf{A}) = \mathbf{C}^\mathsf{T}.</math>
In more detail,
:<math>\mathbf{C} = \left((-1)^{i+j} \mathbf{M}_{ij}\right)_{1 \le i, j \le n}.</math>
The adjugate of {{math|'''A'''}} is the transpose of {{math|'''C'''}}, that is, the {{math|''n''
:<math>\operatorname{adj}(\mathbf{A}) = \mathbf{C}^\mathsf{T} = \left((-1)^{i+j} \mathbf{M}_{ji}\right)_{1 \le i, j \le n}.</math>
Line 18:
The adjugate is defined so that the product of {{math|'''A'''}} with its adjugate yields a [[diagonal matrix]] whose diagonal entries are the determinant {{math|det('''A''')}}. That is,
:<math>\mathbf{A} \operatorname{adj}(\mathbf{A}) = \operatorname{adj}(\mathbf{A}) \mathbf{A} = \det(\mathbf{A}) \mathbf{I},</math>
where {{math|'''I'''}} is the {{math|''n''
The above formula implies one of the fundamental results in matrix algebra, that {{math|'''A'''}} is [[invertible matrix|invertible]] [[if and only if]] {{math|det('''A''')}} is an [[unit (ring theory)|invertible element]] of {{math|''R''}}. When this holds, the equation above yields
Line 28:
== Examples ==
=== 1
Since the determinant of a 0
=== 2
The adjugate of the 2
:<math>\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}</math>
is
Line 41:
<!-- PLEASE DO NOT "CORRECT" WHAT IS NOT BROKEN. CHECK THE INVERSE FIRST. -->
=== 3
Consider a 3
:<math>\mathbf{A} = \begin{bmatrix}
a_{
\end{bmatrix}.</math>
Its cofactor matrix is
:<math>\mathbf{C} = \begin{bmatrix}
+\begin{vmatrix}
-\begin{vmatrix}
+\begin{vmatrix}
\\
-\begin{vmatrix} a_{
+\begin{vmatrix} a_{
-\begin{vmatrix} a_{
\\
+\begin{vmatrix} a_{
-\begin{vmatrix} a_{
+\begin{vmatrix} a_{
\end{bmatrix},</math>
where
:<math>\begin{vmatrix}
= \det\!\begin{bmatrix}
Its adjugate is the transpose of its cofactor matrix,
:<math>\operatorname{adj}(\mathbf{A}) = \mathbf{C}^\mathsf{T} = \begin{bmatrix}
+\begin{vmatrix}
-\begin{vmatrix} a_{
+\begin{vmatrix} a_{
& & \\
-\begin{vmatrix}
+\begin{vmatrix} a_{
-\begin{vmatrix} a_{
& & \\
+\begin{vmatrix}
-\begin{vmatrix} a_{
+\begin{vmatrix} a_{
\end{bmatrix}.</math>
=== 3
As a specific example, we have
:<math>\operatorname{adj}\!\begin{bmatrix}
Line 101:
== Properties ==
For any {{math|''n''
*
* <math>\operatorname{adj}(\mathbf{0}) = \mathbf{0}</math>, where <math>\mathbf{0}</math> is the [[zero matrix]], except that if <math>n=1</math> then <math>\operatorname{adj}(\mathbf{0}) = \mathbf{I}</math>.
* <math>\operatorname{adj}(c \mathbf{A}) = c^{n - 1}\operatorname{adj}(\mathbf{A})</math> for any scalar {{mvar|c}}.
* <math>\operatorname{adj}(\mathbf{A}^\mathsf{T}) = \operatorname{adj}(\mathbf{A})^\mathsf{T}</math>.
Line 115 ⟶ 116:
* <math>\operatorname{adj}(\mathbf{A}^*) = \operatorname{adj}(\mathbf{A})^*</math>, where the asterisk denotes [[conjugate transpose]].
Suppose that {{math|'''B'''}} is another {{math|''n''
:<math>\operatorname{adj}(\mathbf{AB}) = \operatorname{adj}(\mathbf{B})\operatorname{adj}(\mathbf{A}).</math>
This can be [[mathematical proof|proved]] in three ways. One way, valid for any commutative ring, is a direct computation using the [[Cauchy–Binet formula]]. The second way, valid for the real or complex numbers, is to first observe that for invertible matrices {{math|'''A'''}} and {{math|'''B'''}},
Line 134 ⟶ 135:
If {{math|'''A'''}} is invertible, this implies that {{math|adj('''A''')}} also commutes with {{math|'''B'''}}. Over the real or complex numbers, continuity implies that {{math|adj('''A''')}} commutes with {{math|'''B'''}} even when {{math|'''A'''}} is not invertible.
Finally, there is a more general proof than the second proof, which only requires that an ''n''
Using the above properties and other elementary computations, it is straightforward to show that if {{math|'''A'''}} has one of the following properties, then {{math|adj
* [[Upper triangular matrix|upper triangular]],
* [[Lower triangular matrix|lower triangular]],
* [[Diagonal matrix|
* [[Orthogonal matrix|
* [[Unitary matrix|
* [[Symmetric matrix|
* [[Hermitian matrix|Hermitian]],
* [[
If {{math|'''A'''}} is [[Skew-symmetric matrix|skew-symmetric]], then {{math|adj('''A''')}} is skew-symmetric for even ''n'' and symmetric for odd ''n''. Similarly, if {{math|'''A'''}} is [[Skew-Hermitian matrix|skew-Hermitian]], then {{math|adj('''A''')}} is skew-Hermitian for even ''n'' and Hermitian for odd ''n''.
* [[Normal matrix|Normal]].▼
If {{math|'''A'''}} is invertible, then, as noted above, there is a formula for {{math|adj('''A''')}} in terms of the determinant and inverse of {{math|'''A'''}}. When {{math|'''A'''}} is not invertible, the adjugate satisfies different but closely related formulas.
* If {{math|1=rk('''A''') ≤ ''n'' − 2}}, then {{math|1=adj('''A''') = '''0'''}}.
* If {{math|1=rk('''A''') = ''n'' −
=== Column substitution and Cramer's rule ===
Line 157 ⟶ 158:
Partition {{math|'''A'''}} into [[column vector]]s:
:<math>\mathbf{A} = \begin{bmatrix}\mathbf{a}_1 & \cdots & \mathbf{a}_n\end{bmatrix}.</math>
Let {{math|'''b'''}} be a column vector of size {{math|''n''}}. Fix {{math|1
:<math>(\mathbf{A} \stackrel{i}{\leftarrow} \mathbf{b})\ \stackrel{\text{def}}{=}\ \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_{i-1} & \mathbf{b} & \mathbf{a}_{i+1} & \cdots & \mathbf{a}_n \end{bmatrix}.</math>
Laplace expand the determinant of this matrix along column {{mvar|i}}. The result is entry {{mvar|i}} of the product {{math|adj('''A''')'''b'''}}. Collecting these determinants for the different possible {{mvar|i}} yields an equality of column vectors
Line 173 ⟶ 174:
Let the [[characteristic polynomial]] of {{math|'''A'''}} be
:<math>p(s) = \det(s\mathbf{I} - \mathbf{A}) = \sum_{i=0}^n p_i s^i \in R[s].</math>
The first [[divided difference]] of {{math|''p''}} is a [[symmetric polynomial]] of degree {{math|''n'' −
:<math>\Delta p(s, t) = \frac{p(s) - p(t)}{s - t} = \sum_{0 \le j + k < n} p_{j+k+1} s^j t^k \in R[s, t].</math>
Multiply {{math|''s'''''I''' − '''A'''}} by its adjugate. Since {{math|1=''p''('''A''') = '''0'''}} by the [[Cayley–Hamilton theorem]], some elementary manipulations reveal
Line 199 ⟶ 200:
:<math>s+\sum_{\ell=1}^{n-1}\ell k_\ell = n - 1.</math>
For the 2
:<math>\operatorname{adj}(\mathbf{A})=\mathbf{I}_2(\operatorname{tr}\mathbf{A}) - \mathbf{A}.</math>
For the 3
:<math>\operatorname{adj}(\mathbf{A})=\frac{1}{2}\mathbf{I}_3\!\left( (\operatorname{tr}\mathbf{A})^2-\operatorname{tr}\mathbf{A}^2\right) - \mathbf{A}(\operatorname{tr}\mathbf{A}) + \mathbf{A}^2 .</math>
For the 4
:<math>\operatorname{adj}(\mathbf{A})=
\frac{1}{6}\mathbf{I}_4\!\left(
Line 215 ⟶ 216:
The same formula follows directly from the terminating step of the [[Faddeev–LeVerrier algorithm]], which efficiently determines the [[characteristic polynomial]] of {{math|'''A'''}}.
In general, adjugate matrix of arbitrary dimension N matrix can be computed by Einstein's convention.
:<math>(\operatorname{adj}(\mathbf{A}))_{i_N}^{j_N} = \frac{1}{(N-1)!} \epsilon_{i_1 i_2 \ldots i_N} \epsilon^{j_1 j_2 \ldots j_N} A_{j_1}^{i_1} A_{j_2}^{i_2} \ldots A_{j_{N-1}}^{i_{N-1}}
</math>
== Relation to exterior algebras ==
The adjugate can be viewed in abstract terms using [[exterior algebra]]s.
Abstractly, <math>\wedge^n V</math> is [[isomorphic]] to {{math|'''R'''}}, and under any such isomorphism the exterior product is a [[perfect pairing]]. That
Suppose that {{math|''T'' : ''V'' → ''V''}} is a [[linear transformation]].
If {{math|1=''V'' = '''R'''<sup>''n''</sup>}} is endowed with its [[canonical basis]] {{math|'''e'''<sub>1</sub>,
Fix a basis vector {{math|'''e'''<sub>''i''</sub>}} of {{math|'''R'''<sup>''n''</sup>}}.
= \begin{cases} (-1)^{i-1} \mathbf{e}_1 \wedge \dots \wedge \mathbf{e}_n, &\text{if}\ k = i, \\ 0 &\text{otherwise.} \end{cases}</math>
On basis vectors, the {{math|(''n'' −
Each of these terms maps to zero under <math>\phi_{\mathbf{e}_i}</math> except the {{math|1=''k'' = ''i''}} term.
Applying the inverse of <math>\phi</math> shows that the adjugate of {{math|''T''}} is the linear transformation for which
Consequently, its matrix representation is the adjugate of {{math|'''A'''}}.
If {{math|''V''}} is endowed with an [[inner product]] and a volume form, then the map {{math|''φ''}} can be decomposed further.
This induces an isomorphism
A vector {{math|'''v'''}} in {{math|'''R'''<sup>''n''</sup>}} corresponds to the linear functional
By the definition of the Hodge star operator, this linear functional is dual to {{math|*'''v'''}}.
== Higher adjugates ==
Let {{math|'''A'''}} be an {{math|''n''
:<math>(-1)^{\sigma(I) + \sigma(J)}\det \mathbf{A}_{J^c, I^c},</math>
where {{math|σ(''I'')}} and {{math|σ(''J'')}} are the sum of the elements of {{math|''I''}} and {{math|''J''}}, respectively.
Basic properties of higher adjugates include {{Citation needed|date=November 2023}}:
* {{math|1=adj<sub>0</sub>('''A''') = det
* {{math|1=adj<sub>1</sub>('''A''') = adj
* {{math|1=adj<sub>''n''</sub>('''A''') = 1}}.
* {{math|1=adj<sub>''r''</sub>('''BA''') = adj<sub>''r''</sub>('''A''')
* <math>\operatorname{adj}_r(\mathbf{A})C_r(\mathbf{A}) = C_r(\mathbf{A})\operatorname{adj}_r(\mathbf{A}) = (\det \mathbf{A})I_{\binom{n}{r}}</math>, where {{math|''C''<sub>''r''</sub>('''A''')}} denotes the {{math|''r''}}
Higher adjugates may be defined in abstract algebraic terms in a similar fashion to the usual adjugate, substituting <math>\wedge^r V</math> and <math>\wedge^{n-r} V</math> for <math>V</math> and <math>\wedge^{n-1} V</math>, respectively.
Line 279 ⟶ 284:
* [[Jacobi's formula]]
* [[Faddeev–LeVerrier algorithm]]
== References ==
Line 291 ⟶ 297:
* [http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/property.html#adjoint Matrix Reference Manual]
*[http://www.elektro-energetika.cz/calculations/matreg.php?language=english Online matrix calculator (determinant, track, inverse, adjoint, transpose)] Compute Adjugate matrix up to order 8
* {{cite web|url=http://www.wolframalpha.com/input/?i=adjugate+of+{+{+a%2C+b%2C+c+}%2C+{+d%2C+e%2C+f+}%2C+{+g%2C+h%2C+i+}+}
{{Matrix classes}}
|