Content deleted Content added
m ce |
Citation bot (talk | contribs) Altered volume. Add: doi, issue, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Abductive | Category:Order theory | #UCB_Category 105/179 |
||
(4 intermediate revisions by 3 users not shown) | |||
Line 1:
{{Short description|Theorem in order theory and lattice theory}}
{{otheruses4|Kleene's fixed-point theorem in lattice theory|the fixed-point theorem in computability theory|Kleene's recursion theorem}}
[[File:Kleene fixpoint svg.svg|thumb|Computation of the least fixpoint of ''f''(''x'') = {{sfrac|1|10}}''x''<sup>2</sup>+[[arctangent|atan]](''x'')+1 using Kleene's theorem in the real [[interval (mathematics)|interval]] [0,7] with the usual order]]
Line 16 ⟶ 17:
Although [[Tarski's fixed point theorem]]
does not consider how fixed points can be computed by iterating ''f'' from some seed (also, it pertains to [[monotone function]]s on [[complete lattices]]), this result is often attributed to [[Alfred Tarski]] who proves it for additive functions.<ref>{{cite journal | author=Alfred Tarski | url=http://projecteuclid.org/Dienst/UI/1.0/Summarize/euclid.pjm/1103044538 | title=A lattice-theoretical fixpoint theorem and its applications | journal = [[Pacific Journal of Mathematics]] | volume=5
== Proof ==
We first have to show that the ascending Kleene chain of <math>f</math> exists in <math>L</math>. To show that, we prove the following:
|