Content deleted Content added
Gravidus25 (talk | contribs) No edit summary |
→top: now prefix property redirects to here |
||
(One intermediate revision by one other user not shown) | |||
Line 1:
{{Short description|Type of code system}}
A '''prefix code''' is a type of [[code]] system distinguished by its possession of the
For example, a code with code
Prefix codes are also known as '''prefix-free codes''', '''prefix condition codes''' and '''instantaneous codes'''. Although [[Huffman coding]] is just one of many algorithms for deriving prefix codes, prefix codes are also widely referred to as "Huffman codes", even when the code was not produced by a Huffman algorithm. The term '''comma-free code''' is sometimes also applied as a synonym for prefix-free codes<ref>US [[Federal Standard 1037C]]</ref><ref>{{citation|title=ATIS Telecom Glossary 2007|url=http://www.atis.org/glossary/definition.aspx?id=6416|access-date=December 4, 2010|archive-date=July 8, 2010|archive-url=https://web.archive.org/web/20100708083829/http://www.atis.org/glossary/definition.aspx?id=6416|url-status=dead}}</ref> but in most mathematical books and articles (e.g.<ref>{{citation|last1=Berstel|first1=Jean|last2=Perrin|first2=Dominique|title=Theory of Codes|publisher=Academic Press|year=1985}}</ref><ref>{{citation|doi=10.4153/CJM-1958-023-9|last1=Golomb|first1=S. W.|author1-link=Solomon W. Golomb|last2=Gordon|first2=Basil|author2-link=Basil Gordon|last3=Welch|first3=L. R.|title=Comma-Free Codes|journal=Canadian Journal of Mathematics|volume=10|issue=2|pages=202–209|year=1958|s2cid=124092269 |url=https://books.google.com/books?id=oRgtS14oa-sC&pg=PA202|doi-access=free}}</ref>) a comma-free code is used to mean a [[self-synchronizing code]], a subclass of prefix codes.
|