Content deleted Content added
Citation bot (talk | contribs) m Alter: template type. Add: series, isbn, pages. | You can use this bot yourself. Report bugs here. | User-activated. |
|||
(23 intermediate revisions by 7 users not shown) | |||
Line 2:
== History ==
Data stream clustering has recently attracted attention for emerging applications that involve large amounts of streaming data. For clustering, [[k-means clustering|k-means]] is a widely used heuristic but alternate algorithms have also been developed such as [[k-medoids]], [[CURE data clustering algorithm|CURE]] and the popular{{
== Definition ==
Line 17:
=== STREAM ===
STREAM is an algorithm for clustering data streams described by Guha, Mishra, Motwani and O'Callaghan<ref name=cds >{{cite
{{math theorem | STREAM can solve the ''k''-Median problem on a data stream in a single pass, with time ''O''(''n''<sup>1+''e''</sup>) and space ''θ''(''n''<sup>''ε''</sup>) up to a factor 2<sup>O(1/''e'')</sup>, where ''n'' the number of points and {{tmath|e<1/2}}.}}
Line 50:
}}
=== Other
Other well-known algorithms used for data stream clustering are:
* [[BIRCH (data clustering)|BIRCH]]:<ref name="birch">{{cite journal | first1 = T. | last1 = Zhang | first2 = R. | last2 = Ramakrishnan | first3 = M. | last3 = Linvy
* [[Cobweb (clustering)|COBWEB]]:<ref>{{cite journal | first = D. H. | last = Fisher | title = Knowledge Acquisition Via Incremental Conceptual Clustering | journal = Machine Learning | date = 1987 | doi=10.1023/A:1022852608280 | volume=2 | issue = 2 | pages=139–172| doi-access = free }}</ref><ref>{{cite journal | first = D. H. | last = Fisher | citeseerx = 10.1.1.6.9914 | title = Iterative Optimization and Simplification of Hierarchical Clusterings | journal = Journal of AI Research | volume = 4 | date = 1996 | arxiv = cs/9604103 | bibcode = 1996cs........4103F }}</ref> is an incremental clustering technique that keeps a [[hierarchical clustering]] model in the form of a [[Decision tree learning|classification tree]]. For each new point COBWEB descends the tree, updates the nodes along the way and looks for the best node to put the point on (using a [[Category utility| category utility function]]).
* [[C2ICM(incremental clustering)|C2ICM]]:<ref>{{cite journal | first = F. | last = Can
* [[CluStream (data clustering)|CluStream]]:<ref>{{cite journal |last1=Aggarwal |first1=Charu C. |last2=Yu |first2=Philip S. |last3=Han |first3=Jiawei |last4=Wang |first4=Jianyong |title=A Framework for Clustering Evolving Data Streams |journal=Proceedings 2003 VLDB Conference |date=2003 |pages=81–92 |doi=10.1016/B978-012722442-8/50016-1 |isbn=9780127224428 |s2cid=2354576 |url=http://www.vldb.org/conf/2003/papers/S04P02.pdf |ref=CluStream}}</ref> uses micro-clusters that are temporal extensions of [[BIRCH]]<ref name="birch" /> cluster feature vector, so that it can decide if a micro-cluster can be newly created, merged or forgotten based in the analysis of the squared and linear sum of the current micro-clusters data-points and timestamps, and then at any point in time one can generate macro-clusters by clustering these micro-clustering using an offline clustering algorithm like [[K-Means]], thus producing a final clustering result.
== References ==
|