Content deleted Content added
Citation bot (talk | contribs) m Alter: url. | You can use this bot yourself. Report bugs here.| Activated by User:Nemo bis | via #UCB_webform |
|||
(21 intermediate revisions by 7 users not shown) | |||
Line 2:
== History ==
Data stream clustering has recently attracted attention for emerging applications that involve large amounts of streaming data. For clustering, [[k-means clustering|k-means]] is a widely used heuristic but alternate algorithms have also been developed such as [[k-medoids]], [[CURE data clustering algorithm|CURE]] and the popular{{
== Definition ==
Line 17:
=== STREAM ===
STREAM is an algorithm for clustering data streams described by Guha, Mishra, Motwani and O'Callaghan<ref name=cds >{{cite
{{math theorem | STREAM can solve the ''k''-Median problem on a data stream in a single pass, with time ''O''(''n''<sup>1+''e''</sup>) and space ''θ''(''n''<sup>''ε''</sup>) up to a factor 2<sup>O(1/''e'')</sup>, where ''n'' the number of points and {{tmath|e<1/2}}.}}
Line 50:
}}
=== Other
Other well-known algorithms used for data stream clustering are:
* [[BIRCH (data clustering)|BIRCH]]:<ref name="birch">{{cite journal | first1 = T. | last1 = Zhang | first2 = R. | last2 = Ramakrishnan | first3 = M. | last3 = Linvy
* [[Cobweb (clustering)|COBWEB]]:<ref>{{cite journal | first = D. H. | last = Fisher | title = Knowledge Acquisition Via Incremental Conceptual Clustering | journal = Machine Learning | date = 1987 | doi=10.1023/A:1022852608280 | volume=2 | issue = 2 | pages=139–172| doi-access = free }}</ref><ref>{{cite journal | first = D. H. | last = Fisher | citeseerx = 10.1.1.6.9914 | title = Iterative Optimization and Simplification of Hierarchical Clusterings | journal = Journal of AI Research | volume = 4 | date = 1996 | arxiv = cs/9604103 | bibcode = 1996cs........4103F
* [[C2ICM(incremental clustering)|C2ICM]]:<ref>{{cite journal | first = F. | last = Can | title = Incremental Clustering for Dynamic Information Processing | journal = ACM Transactions on Information Systems | volume = 11 | issue = 2 | date = 1993 | pages = 143–164 | doi=10.1145/130226.134466| s2cid = 1691726 | doi-access = free }}</ref> builds a flat partitioning clustering structure by selecting some objects as cluster seeds/initiators and a non-seed is assigned to the seed that provides the highest coverage, addition of new objects can introduce new seeds and falsify some existing old seeds, during incremental clustering new objects and the members of the falsified clusters are assigned to one of the existing new/old seeds.
* [[CluStream (data clustering)|CluStream]]:<ref>{{cite journal |last1=Aggarwal |first1=Charu C. |last2=Yu |first2=Philip S. |last3=Han |first3=Jiawei |last4=Wang |first4=Jianyong |title=A Framework for Clustering Evolving Data Streams |journal=Proceedings 2003 VLDB Conference |date=2003 |pages=81–92 |doi=10.1016/B978-012722442-8/50016-1 |isbn=9780127224428 |s2cid=2354576 |url=http://www.vldb.org/conf/2003/papers/S04P02.pdf |ref=CluStream}}</ref> uses micro-clusters that are temporal extensions of [[BIRCH]]<ref name="birch" /> cluster feature vector, so that it can decide if a micro-cluster can be newly created, merged or forgotten based in the analysis of the squared and linear sum of the current micro-clusters data-points and timestamps, and then at any point in time one can generate macro-clusters by clustering these micro-clustering using an offline clustering algorithm like [[K-Means]], thus producing a final clustering result.
== References ==
|