Content deleted Content added
m →Finitely many variables: Remove blank line(s) between list items per WP:LISTGAP to fix an accessibility issue for users of screen readers. Do WP:GENFIXES and cleanup if needed. Discuss this at... using AWB |
There was a Script warning on the page from a citation template, "Category:CS1 maint: date and year", fixed by removing the redundant year= field as date= was already set |
||
(46 intermediate revisions by 23 users not shown) | |||
Line 1:
{{Short description|Mathematical function on ordinals}}
In [[mathematics]], the '''Veblen functions''' are a hierarchy of [[normal function]]s ([[continuous function (set theory)|continuous]] [[strictly increasing function|strictly increasing]] [[function (mathematics)|function]]s from [[ordinal number|ordinal]]s to ordinals), introduced by [[Oswald Veblen]] in {{harvtxt|Veblen|1908}}. If ''φ''<sub>0</sub> is any normal function, then for any non-zero ordinal ''α'', ''φ''<sub>''α''</sub> is the function enumerating the common [[fixed point (mathematics)|fixed point]]s of ''φ''<sub>''β''</sub> for ''β''<''α''. These functions are all normal.
==
In the special case when ''φ''<sub>0</sub>(''α'')=ω<sup>''α''</sup>
this family of functions is known as the '''Veblen hierarchy'''.
The function ''φ''<sub>1</sub> is the same as the [[Epsilon numbers (mathematics)|ε function]]: ''φ''<sub>1</sub>(''α'')= ε<sub>''α''</sub>.<ref>[[Stephen G. Simpson]], ''Subsystems of Second-order Arithmetic'' (2009, p.387)</ref> If <math>\alpha < \beta \,,</math> then <math>\varphi_{\alpha}(\varphi_{\beta}(\gamma)) = \varphi_{\beta}(\gamma)</math>.<ref
=== Fundamental sequences for the Veblen hierarchy ===
{{unsourced section|date=May 2023}}
The fundamental sequence for an ordinal with [[cofinality]] ω is a distinguished strictly increasing ω-sequence
A variation of [[Ordinal arithmetic#Cantor normal form|Cantor normal form]] used in connection with the Veblen hierarchy is
For any ''β'', if ''γ'' is a limit with <math>\gamma < \varphi_{\beta} (\gamma) \,,</math> then let <math>\varphi_{\beta}(\gamma) [n] = \varphi_{\beta}(\gamma [n]) \,.</math>
No such sequence can be provided for <math>\varphi_0(0)</math> = ω<sup>0</sup> = 1 because it does not have cofinality ω.
Line 17 ⟶ 19:
For <math>\varphi_0(\gamma+1) = \omega ^{\gamma+1} = \omega^ \gamma \cdot \omega \,,</math> we choose <math>\varphi_0(\gamma+1) [n] = \varphi_0(\gamma) \cdot n = \omega^{\gamma} \cdot n \,.</math>
For <math>\varphi_{\beta+1}(0) \,,</math> we use <math>\varphi_{\beta+1}(0) [0] = 0
For <math>\varphi_{\beta+1}(\gamma+1)</math>, we use <math>\varphi_{\beta+1}(\gamma+1) [0] = \varphi_{\beta+1}(\gamma)+1
Now suppose that ''β'' is a limit:
If <math>\beta < \varphi_{\beta}(0)</math>, then let <math>\varphi_{\beta}(0) [n] = \varphi_{\beta [n]}(0) \,.</math>
Line 30 ⟶ 32:
===The Γ function===
The function Γ enumerates the ordinals ''α'' such that φ<sub>''α''</sub>(0) = ''α''.
Γ<sub>0</sub> is the [[Feferman–Schütte ordinal]], i.e. it is the smallest ''α'' such that ''φ''<sub>''α''</sub>(0) = ''α''.
For Γ<sub>0</sub>, a fundamental sequence could be chosen to be <math>\Gamma_0 [0] = 0
For Γ<sub>β+1</sub>, let <math>\Gamma_{\beta+1} [0] = \Gamma_{\beta} + 1
For Γ<sub>''β''</sub> where <math>\beta < \Gamma_{\beta}
==Generalizations==
===Finitely many variables===
To build the Veblen function of a finite number of arguments (finitary Veblen function), let the binary function <math>\varphi(\alpha, \gamma)</math> be <math>\varphi_\alpha(\gamma)</math> as defined above.
Let <math>z</math> be an empty string or a string consisting of one or more comma-separated zeros <math>0,0,...,0</math> and <math>s</math> be an empty string or a string consisting of one or more comma-separated ordinals <math>\alpha _{1},\alpha _{2},...,\alpha _{n}</math> with <math>\alpha _{1}>0</math>. The binary function <math>\varphi (\beta ,\gamma )</math> can be written as <math>\varphi (s,\beta ,z,\gamma )</math> where both <math>s</math> and <math>z</math> are empty strings.
The finitary Veblen functions are defined as follows:
* <math>\varphi (\gamma )=\omega ^{\gamma }</math>
* <math>\varphi (z,s,\gamma )=\varphi (s,\gamma )</math>
* if <math>\beta >0</math>, then <math>\varphi (s,\beta ,z,\gamma )</math> denotes the <math>(1+\gamma )</math>-th common fixed point of the functions <math>\xi \mapsto \varphi (s,\delta ,\xi ,z)</math> for each <math>\delta <\beta</math>
For example,
The ordinal
Every non-zero ordinal <math>\alpha</math> less than the small Veblen ordinal (SVO) can be uniquely written in normal form for the finitary Veblen function:
<math>\alpha =\varphi (s_{1})+\varphi (s_{2})+\cdots +\varphi (s_{k})</math>
where
* <math>k</math> is a positive integer
* <math>\varphi (s_{1})\geq \varphi (s_{2})\geq \cdots \geq \varphi (s_{k})</math>
* <math>s_{m}</math> is a string consisting of one or more comma-separated ordinals <math>\alpha _{m,1},\alpha _{m,2},...,\alpha _{m,n_{m}}</math> where <math>\alpha _{m,1}>0</math> and each <math>\alpha _{m,i}<\varphi (s_{m})</math>
=== Fundamental sequences for limit ordinals of finitary Veblen function ===
For limit ordinals <math>\alpha<SVO</math>, written in normal form for the finitary Veblen function:
* <math>(\varphi(s_1)+\varphi(s_2)+\cdots+\varphi(s_k))[n]=\varphi(s_1)+\varphi(s_2)+\cdots+\varphi(s_k)[n]</math>,
* <math>\varphi(\gamma)[n]=\left\{\begin{array}{lcr}
n \quad \text{if} \quad \gamma=1\\
\varphi(\gamma-1)\cdot n \quad \text{if} \quad \gamma \quad \text{is a successor ordinal}\\
\varphi(\gamma[n]) \quad \text{if} \quad \gamma \quad \text{is a limit ordinal}\\
\end{array}\right.
</math>,
* <math>\varphi(s,\beta,z,\gamma)[0]=0</math> and <math>\varphi(s,\beta,z,\gamma)[n+1]=\varphi(s,\beta-1,\varphi(s,\beta,z,\gamma)[n],z)</math> if <math>\gamma=0</math> and <math>\beta</math> is a successor ordinal,
* <math>\varphi(s,\beta,z,\gamma)[0]=\varphi(s,\beta,z,\gamma-1)+1</math> and <math>\varphi(s,\beta,z,\gamma)[n+1]=\varphi(s,\beta-1,\varphi(s,\beta,z,\gamma)[n],z)</math> if <math>\gamma</math> and <math>\beta</math> are successor ordinals,
* <math>\varphi(s,\beta,z,\gamma)[n]=\varphi(s,\beta,z,\gamma[n])</math> if <math>\gamma</math> is a limit ordinal,
* <math>\varphi(s,\beta,z,\gamma)[n]=\varphi(s,\beta[n],z,\gamma)</math> if <math>\gamma=0</math> and <math>\beta</math> is a limit ordinal,
* <math>\varphi(s,\beta,z,\gamma)[n]=\varphi(s,\beta[n],\varphi(s,\beta,z,\gamma-1)+1,z)</math> if <math>\gamma</math> is a successor ordinal and <math>\beta</math> is a limit ordinal.
===Transfinitely many variables===
More generally, Veblen showed that φ can be defined even for a transfinite sequence of ordinals α<sub>β</sub>, provided that all but a finite number of them are zero. Notice that if such a sequence of ordinals is chosen from those less than an uncountable [[regular cardinal]] κ, then the sequence may be encoded as a single ordinal less than κ<sup>κ</sup> (ordinal exponentiation). So one is defining a function φ from κ<sup>κ</sup> into κ.
The definition can be given as follows: let <u>α</u> be a transfinite sequence of ordinals (i.e., an ordinal function with finite support) ''
For example, if <u>α</u>=(
The smallest ordinal ''α'' such that ''α'' is greater than ''φ'' applied to any function with support in ''α'' (i.e.,
▲The definition can be given as follows: let <u>α</u> be a transfinite sequence of ordinals (i.e., an ordinal function with finite support) ''which ends in zero'' (i.e., such that α₀=0), and let <u>α</u><nowiki>[</nowiki>0↦γ<nowiki>]</nowiki> denote the same function where the final 0 has been replaced by γ. Then γ↦φ(<u>α</u><nowiki>[</nowiki>0↦γ<nowiki>]</nowiki>) is defined as the function enumerating the common fixed points of all functions ξ↦φ(<u>β</u>) where <u>β</u> ranges over all sequences which are obtained by decreasing the smallest-indexed nonzero value of <u>α</u> and replacing some smaller-indexed value with the indeterminate ξ (i.e., <u>β</u>=<u>α</u><nowiki>[</nowiki>ι₀↦ζ,ι↦ξ<nowiki>]</nowiki> meaning that for the smallest index ι₀ such that α<sub>ι₀</sub> is nonzero the latter has been replaced by some value ζ<α<sub>ι₀</sub> and that for some smaller index ι<ι₀, the value α<sub>ι</sub>=0 has been replaced with ξ).
=== Further extensions ===
▲For example, if <u>α</u>=(ω↦1) denotes the transfinite sequence with value 1 at ω and 0 everywhere else, then φ(ω↦1) is the smallest fixed point of all the functions ξ↦φ(ξ,0,…,0) with finitely many final zeroes (it is also the limit of the φ(1,0,…,0) with finitely many zeroes, the small Veblen ordinal).
In {{harvtxt|Massmann|Kwon|2023}}, the Veblen function was extended further to a somewhat technical system known as ''dimensional Veblen''. In this, one may take fixed points or row numbers, meaning expressions such as ''φ''(1@(1,0)) are valid (representing the large Veblen ordinal), visualised as multi-dimensional arrays. It was proven that all ordinals below the [[Bachmann–Howard ordinal]] could be represented in this system, and that the representations for all ordinals below the [[large Veblen ordinal]] were aesthetically the same as in the original system.
==Values==
▲The smallest ordinal α such that α is greater than φ applied to any function with support in α (i.e., which cannot be reached “from below” using the Veblen function of transfinitely many variables) is sometimes known as the [[Large Veblen ordinal|“large” Veblen ordinal]].
The function takes on several prominent values:
* <math>\varphi(1,0) = \varepsilon_0</math> is the [[Proof theoretic ordinal|proof-theoretic ordinal]] [[Gentzen's consistency proof|of]] [[Peano axioms|Peano arithmetic]] and the limit of what ordinals can be represented in terms of [[Cantor normal form]] and smaller ordinals.
* <math>\varphi(\omega,0)</math>, a bound on the order types of the [[Path ordering (term rewriting)|recursive path orderings]] with finitely many function symbols, and the smallest ordinal closed under [[Primitive recursive function|primitive recursive]] ordinal functions.<ref>N. Dershowitz, M. Okada, [https://www.cs.tau.ac.il/~nachumd/papers/ProofTheoretic.pdf Proof Theoretic Techniques for Term Rewriting Theory] (1988). p.105</ref><ref>{{Cite journal |last=Avigad |first=Jeremy |authorlink =
Jeremy Avigad|date=May 23, 2001 |title=An ordinal analysis of admissible set theory using recursion on ordinal notations |url=https://www.andrew.cmu.edu/user/avigad/Papers/admissible.pdf |journal=Journal of Mathematical Logic |volume=2 |pages=91--112 |doi=10.1142/s0219061302000126}}</ref>
* The [[Feferman–Schütte ordinal]] <math>\Gamma_0</math> is equal to <math>\varphi(1,0,0)</math>.<ref>D. Madore, "[http://www.madore.org/~david/math/ordinal-zoo.pdf A Zoo of Ordinals]" (2017). Accessed 02 November 2022.</ref>
* The [[small Veblen ordinal]] is equal to <math>\varphi\begin{pmatrix}1 \\ \omega\end{pmatrix}</math>.<ref>{{cite journal | url=https://link.springer.com/content/pdf/10.1007/s00153-019-00658-x.pdf | doi=10.1007/s00153-019-00658-x | title=A flexible type system for the small Veblen ordinal | year=2019 | last1=Ranzi | first1=Florian | last2=Strahm | first2=Thomas | journal=Archive for Mathematical Logic | volume=58 | issue=5–6 | pages=711–751 | s2cid=253675808 }}</ref>
==References==
* <!--Not considered reliable, according to a revert on [[Small Veblen ordinal]].-->Hilbert Levitz, ''[http://www.cs.fsu.edu/~levitz/ords.ps Transfinite Ordinals and Their Notations: For The Uninitiated]'', expository article (8 pages, in [[PostScript]])
*{{citation|last= Pohlers|first=
*{{citation|mr=0505313|last= Schütte|first= Kurt |title=Proof theory|series= Grundlehren der Mathematischen Wissenschaften|volume= 225|publisher= Springer-Verlag|place= Berlin-New York|year= 1977|pages= xii+299 | isbn= 978-3-540-07911-
*{{citation|mr=0882549|last= Takeuti|first= Gaisi |authorlink = Gaisi Takeuti|title=Proof theory|edition= Second |series= Studies in Logic and the Foundations of Mathematics|volume= 81|publisher= North-Holland Publishing Co.|place= Amsterdam|year=1987| isbn= 978-0-444-87943-
*{{citation |last=Smorynski |first=C. |year=1982 |title=The varieties of arboreal experience |journal=Math. Intelligencer |volume=4 |issue=4 |pages=182–189 |doi=10.1007/BF03023553}} contains an informal description of the Veblen hierarchy.
*{{citation|title= Continuous Increasing Functions of Finite and Transfinite Ordinals |first=Oswald |last=Veblen |journal= Transactions of the American Mathematical Society|volume= 9|issue= 3|year= 1908|pages=280–292 |doi= 10.2307/1988605|jstor=1988605|doi-access= free}}
*{{citation |jstor=2272243 |pages=439–459 |last1=Miller |first1=Larry W. |title=Normal Functions and Constructive Ordinal Notations |volume=41 |issue=2 |journal=The Journal of Symbolic Logic |year=1976 |doi=10.2307/2272243}}
*{{citation |last=Massmann |first=Jayde Sylvie |title=Extending the Veblen Function |date=October 20, 2023 |url=https://arxiv.org/abs/2310.12832 |arxiv=2310.12832 |last2=Kwon |first2=Adrian Wang}}
===Citations===
{{Reflist}}
[[Category:Ordinal numbers]]
|