Cosmology Large Angular Scale Surveyor: Difference between revisions

Content deleted Content added
m Defined VPM acronym at first mention.
Citation bot (talk | contribs)
Altered template type. Add: class, eprint. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Headbomb | #UCB_toolbar
 
(3 intermediate revisions by 3 users not shown)
Line 17:
[[File:CLASS Experiment 40 GHz Focal Plane.png|thumbnail|250px|left|CLASS 40 GHz camera, showing the feedhorns that couple light onto the transition-edge sensor bolometers at a temperature of 0.1 [[Kelvin]].]]
 
The CLASS instrument is designed to survey 65% of the sky at millimeter wavelengths, in the microwave portion of the [[electromagnetic spectrum]], from a ground-based observatory with a resolution of about 1° — approximately twice the angular size of the sun and moon as viewed from Earth. The CLASS array consists of two [[altazimuth mount]]s that allow the telescopes to be pointed to observe different patches of sky. The four CLASS telescopes observe at a range of frequencies to separate emission from our [[Milky Way|galaxy]] from that of the CMB. One telescope observes at 40&nbsp;[[Hertz|GHz]] (7.5&nbsp;mm wavelength); one telescope observes at 90&nbsp;GHz (3.3&nbsp;mm wavelength) with a second 90 GHz telescope planned in the future; and the fourth telescope observes in two frequency bands centered at 150&nbsp;GHz (2&nbsp;mm wavelength) and 220&nbsp;GHz (1.4&nbsp;mm wavelength). Two separate telescopes, observing at different frequencies, are housed on each mount. The 90 GHz telescope detector array was upgraded in 20192022 to significantly increase sensitivity. In 2024 the variable-delay polarization modulator (VPM, see below for more details) for the CLASS 90 GHz telescope was replaced with a rotating reflective half-wave plate (HWP)<ref>{{Cite book |last1=Shi |first1=Rui |title=Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII |last2=Brewer |first2=Michael |last3=Chan |first3=Carol |last4=Chuss |first4=David T. |last5=Couto |first5=Jullianna D. |last6=Eimer |first6=Joseph R. |last7=Karakla |first7=John |last8=Shukawa |first8=Koji |last9=Valle |first9=Deniz |date=2024-08-16 |publisher=SPIE |isbn=978-1-5106-7527-8 |editor-last=Zmuidzinas |editor-first=Jonas |pages=125 |chapter=Design and characterization of a 60-cm reflective half-wave plate for the CLASS 90 GHZ band telescope |doi=10.1117/12.3016346 |editor2-last=Gao |editor2-first=Jian-Rong |chapter-url=https://www.spiedigitallibrary.org/conference-proceedings-of-spie/13102/3016346/Design-and-characterization-of-a-60-cm-reflective-half-wave/10.1117/12.3016346.full |last10=Appel |first10=John W. |last11=Bennett |first11=Charles L. |last12=Dahal |first12=Sumit |last13=Essinger-Hileman |first13=Thomas |last14=Marriage |first14=Tobias T. |last15=Petroff |first15=Matthew A. |arxiv=2407.08912}}</ref> to concentrate on improved sensitivity for linear polarization.
 
The CLASS instrument is specifically designed to measure polarization. As an [[electromagnetic wave]], light consists of oscillating electric and magnetic fields. These fields can have both an amplitude, or intensity, and a preferred direction in which they oscillate, or polarization. The polarized signal that CLASS will attempt to measure is incredibly small. It is expected to be only a few parts-per-billion change in the polarization of the already-cold 2.725 K CMB.<ref name=apj420_439/> To measure such a small signal, CLASS employs focal plane arrays with large numbers of [[horn antenna|feedhorn]]-coupled, [[transition-edge sensor|transition-edge-sensor]] [[bolometers]] cooled to just 0.1&nbsp;°C above absolute zero by [[Dilution refrigerator|cryogenic helium refrigerators]]. This low temperature reduces the intrinsic thermal noise of the detectors.<ref name=2012SPIE_Eimer/><ref name=2013Eimer_Thesis/><ref name=2014SPIE_Appel/>
Line 29:
CLASS is currently observing the sky in four frequency bands. The CLASS 40&nbsp;GHz telescope achieved first light on 8 May 2016 and began a roughly five-year survey in September 2016 after initial commissioning observations were complete. In early 2018, a first 90&nbsp;GHz telescope was installed on the same mount as the 40&nbsp;GHz telescope, achieving first light on 30 May 2018. In 2019, the dual-frequency 150/220&nbsp;GHz telescope was deployed, along with a second telescope mount, and achieved first light on 21 September 2019.
 
CLASS has released results from the first five years of observations with the 40 GHz telescope, through mid-2022,<ref name=":1">{{Cite journal |last1=Eimer |first1=Joseph R. |last2=Li 李 |first2=Yunyang 云炀 |last3=Brewer |first3=Michael K. |last4=Shi 时 |first4=Rui 瑞 |last5=Ali |first5=Aamir |last6=Appel |first6=John W. |last7=Bennett |first7=Charles L. |last8=Bruno |first8=Sarah Marie |last9=Bustos |first9=Ricardo |last10=Chuss |first10=David T. |last11=Cleary |first11=Joseph |last12=Dahal |first12=Sumit |last13=Datta |first13=Rahul |last14=Denes Couto |first14=Jullianna |last15=Denis |first15=Kevin L. |date=2024-03-01 |title=CLASS Angular Power Spectra and Map-component Analysis for 40 GHz Observations through 2022 |journal=The Astrophysical Journal |volume=963 |issue=2 |pages=92 |arxiv=2309.00675 |bibcode=2024ApJ...963...92E |doi=10.3847/1538-4357/ad1abf |issn=0004-637X |doi-access=free}}</ref><ref>{{Cite journal |last1=Li 李 |first1=Yunyang 云炀 |last2=Eimer |first2=Joseph R. |last3=Osumi |first3=Keisuke |last4=Appel |first4=John W. |last5=Brewer |first5=Michael K. |last6=Ali |first6=Aamir |last7=Bennett |first7=Charles L. |last8=Bruno |first8=Sarah Marie |last9=Bustos |first9=Ricardo |last10=Chuss |first10=David T. |last11=Cleary |first11=Joseph |last12=Couto |first12=Jullianna Denes |last13=Dahal |first13=Sumit |last14=Datta |first14=Rahul |last15=Denis |first15=Kevin L. |date=2023-10-01 |title=CLASS Data Pipeline and Maps for 40 GHz Observations through 2022 |journal=The Astrophysical Journal |volume=956 |issue=2 |pages=77 |arxiv=2305.01045 |bibcode=2023ApJ...956...77L |doi=10.3847/1538-4357/acf293 |issn=0004-637X |doi-access=free}}</ref> and from observations with the 90 GHz telescope through 2024.<ref>{{Citationcite arXiv |lastlast1=Li |firstfirst1=Yunyang |title=A Measurement of the Largest-Scale CMB E-mode Polarization with CLASS |date=2025-01-21 |urleprint=https://arxiv.org/abs/2501.11904 |access-date=2025-05-15 |publisher=arXiv |doi=10.48550/arXiv.2501.11904 |id=arXiv:2501.11904 |last2=Eimer |first2=Joseph |last3=Appel |first3=John |last4=Bennett |first4=Charles |last5=Brewer |first5=Michael |last6=Bruno |first6=Sarah Marie |last7=Bustos |first7=Ricardo |last8=Chan |first8=Carol |last9=Chuss |first9=David|class=astro-ph.CO }}</ref> CLASS has made the most sensitive maps covering approximately 74% of the sky at 40 GHz at angular scales of approximately 2° to 20°. These maps have been combined with those of the [[Wilkinson Microwave Anisotropy Probe|Wilkinson Microwave Anisotropy Probe (WMAP)]] satellite at a similar frequency to produce even more sensitive combined maps.<ref>{{Cite journal |last1=Shi |first1=Rui |last2=Appel |first2=John W. |last3=Bennett |first3=Charles L. |last4=Bustos |first4=Ricardo |last5=Chuss |first5=David T. |last6=Dahal |first6=Sumit |last7=Denes Couto |first7=Jullianna |last8=Eimer |first8=Joseph R. |last9=Essinger-Hileman |first9=Thomas |last10=Harrington |first10=Kathleen |last11=Iuliano |first11=Jeffrey |last12=Li |first12=Yunyang |last13=Marriage |first13=Tobias A. |last14=Petroff |first14=Matthew A. |last15=Rostem |first15=Karwan |date=August 5, 2024 |title=Sensitivity-improved Polarization Maps at 40 GHz with CLASS and WMAP Data |journal=The Astrophysical Journal |language=en |volume=971 |issue=1 |pages=41 |doi=10.3847/1538-4357/ad5313 |doi-access=free |arxiv=2404.17567 |bibcode=2024ApJ...971...41S |issn=0004-637X}}</ref> CLASS maps at 90 GHz are comparable in sensitivity to those of the [[Planck (spacecraft)|Planck Satellite]] at similar frequencies and have been used to place constraints on [[reionization]], a first for a ground-based telescope.
 
CLASS has made a first detection of [[circular polarization]] from the atmosphere at a frequency of 40&nbsp;GHz, which is in agreement with models of atmospheric circular polarization due to [[Zeeman effect|Zeeman splitting]] of [[Allotropes of oxygen|molecular oxygen]] in the presence of the Earth's magnetic field.<ref>{{Cite journal|last1=Petroff|first1=Matthew A.|last2=Eimer|first2=Joseph R.|last3=Harrington|first3=Kathleen|last4=Ali|first4=Aamir|last5=Appel|first5=John W.|last6=Bennett|first6=Charles L.|last7=Brewer|first7=Michael K.|last8=Bustos|first8=Ricardo|last9=Chan|first9=Manwei|last10=Chuss|first10=David T.|last11=Cleary|first11=Joseph|date=2020-01-30|title=Two-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: A First Detection of Atmospheric Circular Polarization at Q band|journal=The Astrophysical Journal|volume=889|issue=2|pages=120|doi=10.3847/1538-4357/ab64e2|issn=1538-4357|arxiv=1911.01016|bibcode=2020ApJ...889..120P |s2cid=207870198 |doi-access=free }}</ref> The atmospheric circular polarization is smoothly-varying over the sky, allowing it to be separated from celestial circular polarization. This has allowed CLASS to constrain celestial circular polarization at 40&nbsp;GHz to be less than 0.1 μK at angular scales of 5 degrees and less than 1 μK at angular scales around 1 degree.<ref name=":1" /><ref>{{Cite journal|last1=Padilla|first1=Ivan L.|last2=Eimer|first2=Joseph R.|last3=Li|first3=Yunyang|last4=Addison|first4=Graeme E.|last5=Ali|first5=Aamir|last6=Appel|first6=John W.|last7=Bennett|first7=Charles L.|last8=Bustos|first8=Ricardo|last9=Brewer|first9=Michael K.|last10=Chan|first10=Manwei|last11=Chuss|first11=David T.|date=2020-01-29|title=Two-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: A Measurement of Circular Polarization at 40 GHz|journal=The Astrophysical Journal|volume=889|issue=2|pages=105|doi=10.3847/1538-4357/ab61f8|issn=1538-4357|arxiv=1911.00391|bibcode=2020ApJ...889..105P |s2cid=207870170 |doi-access=free }}</ref> This is an improvement upon previous limits on circular polarization in the CMB by more than a factor of 100.<ref>{{Cite journal|last1=Mainini|first1=R.|last2=Minelli|first2=D.|last3=Gervasi|first3=M.|last4=Boella|first4=G.|last5=Sironi|first5=G.|last6=Baú|first6=A.|last7=Banfi|first7=S.|last8=Passerini|first8=A.|last9=Lucia|first9=A. De|last10=Cavaliere|first10=F.|date=August 2013|title=An improved upper limit to the CMB circular polarization at large angular scales|journal=Journal of Cosmology and Astroparticle Physics|language=en|volume=2013|issue=8|pages=033|doi=10.1088/1475-7516/2013/08/033|issn=1475-7516|arxiv=1307.6090|bibcode=2013JCAP...08..033M |s2cid=119236025}}</ref><ref>{{Cite journal|last1=Nagy|first1=J. M.|last2=Ade|first2=P. A. R.|last3=Amiri|first3=M.|last4=Benton|first4=S. J.|last5=Bergman|first5=A. S.|last6=Bihary|first6=R.|last7=Bock|first7=J. J.|last8=Bond|first8=J. R.|last9=Bryan|first9=S. A.|last10=Chiang|first10=H. C.|last11=Contaldi|first11=C. R.|date=August 2017|title=A New Limit on CMB Circular Polarization from SPIDER|journal=The Astrophysical Journal|language=en|volume=844|issue=2|pages=151|doi=10.3847/1538-4357/aa7cfd|arxiv=1704.00215 |bibcode=2017ApJ...844..151N |issn=0004-637X|hdl=10852/60193|s2cid=13694135|hdl-access=free |doi-access=free }}</ref>