Hilbert basis (linear programming): Difference between revisions

Content deleted Content added
No edit summary
Link suggestions feature: 2 links added.
 
(20 intermediate revisions by 13 users not shown)
Line 1:
The '''Hilbert basis''' of a [[convex cone]] ''C'' is a minimal set of integer [[vector (mathematics)|vector]]s in ''C'' such that every [[integer]] vector in ''C'' is a [[conical combination]] of the vectors in the Hilbert basis with integer coefficients.
 
== Definition ==
[[File:Hilbert basis.gif|thumb|Hilbert basis visualization. Two rays in the plane define an infinite cone of all the points lying between them. The unique Hilbert basis points of the cone are circled in yellow. Every integer point in the cone can be written as a sum of these basis elements. As you change the cone by moving one of the rays, the Hilbert basis also changes.]]
 
Given a [[Lattice (group)|lattice]] <math>L\subset\mathbb{Z}^d</math> and a convex polyhedral cone with generators <math>a_1,\ldots,a_n\in\mathbb{Z}^d</math>
 
:<math>C=\{ \lambda_1 a_1 + \ldots + \lambda_n a_n \mid \lambda_1,\ldots,\lambda_n \geq 0, \lambda_1,\ldots,\lambda_n \in\mathbb{R}\}\subset\mathbb{R}^d,</math>
 
we consider the [[monoid]] <math>C\cap L</math>. By [[Gordan's lemma]], this monoid is finetelyfinitely generated, i.e., there exists a [[finite set]] of lattice points <math>\{x_1,\ldots,x_m\}\subset C\cap L</math> such that every lattice point <math>x\in C\cap L</math> is an integer conical combination of these points:
 
:<math> x=\lambda_1 x_1+\ldots+\lambda_m x_m, \quad\lambda_1,\ldots,\lambda_m\in\mathbb{Z}, \lambda_1,\ldots,\lambda_m\geq0.</math>
 
The '''Hilbert basis''' ofcone ''C'' is thecalled pointed if <math>x,-x\in C</math> implies <math>x=0</math>. In this case there exists a unique minimal generating set of the monoid <math>C\cap L</math>—the '''Hilbert basis''' of ''C''. It is given by the set of irreducible lattice points: An element <math>x\in C\cap L</math> is called irreducible if it can not be written as the sum of two non-zero elements, i.e., <math>x=y+z</math> implies <math>y=0</math> or <math>z=0</math>.
 
== References ==
 
* {{Citation | last1=Bruns | first1=Winfried |last2=Gubeladze | first2=Joseph | last3=Henk | first3=Martin | last4=Martin | first4=Alexander | last5=Weismantel | first5=Robert | title=A counterexample to an integer analogue of Carathéodory's theorem | doi=10.1515/crll.1999.045 | year=1999 | journal=[[Journal für die reine und angewandte Mathematik]] | volume=5101999 | pages=179–185 | issue=510}}
* {{Citation | last1=Cook | first1=William John | last2=Fonlupt | first2=Jean | last3=Schrijver | first3=Alexander | authorlink3=Alexander Schrijver|title=An integer analogue of Carathéodory's theorem | doi=10.1016/0095-8956(86)90064-X | year=1986 | journal=Journal of Combinatorial Theory., Series B | volume=40 | issue=1 | pages=63–70| doi-access=free }}
* {{Citation | last1=Eisenbrand | first1=Friedrich | last2=Shmonin | first2=Gennady | title=Carathéodory bounds for integer cones | doi=10.1016/j.orl.2005.09.008 | year=2006 | journal=Operations Research Letters | volume=34 | issue=5 | pages=564–568| url=http://infoscience.epfl.ch/record/121640 }}
* {{cite journal |author = D. V. Pasechnik |title=On computing the Hilbert bases via the Elliott—MacMahon algorithm |journal=Theoretical Computer Science |volume=263 |issue=1–2 |year=2001 |pages=37–46 |doi=10.1016/S0304-3975(00)00229-2|doi-access=free |hdl=10220/8240 |hdl-access=free }}
 
{{mathapplied-stub}}
 
[[Category:Mathematical optimization]]
[[Category:Operations research]]
[[Category:Linear programming]]
[[Category:Discrete geometry]]
[[Category:CombinatorialEponyms algebrain geometry]]
 
 
{{mathapplied-stub}}