Content deleted Content added
IceBergYYC (talk | contribs) →Remarkable formulas: linked to robin cockett |
|||
(20 intermediate revisions by 12 users not shown) | |||
Line 1:
{{Short description|System of resource-aware logic}}
{{use dmy dates|date=March 2025}}
{{Redirect|⅋|the EP|& (The Moth & The Flame EP){{!}}''&'' (The Moth & The Flame EP)}}
'''Linear logic''' is a [[substructural logic]] proposed by French [[logician]] [[Jean-Yves Girard]] as a refinement of [[classical logic|classical]] and [[intuitionistic logic]], joining the [[Duality (mathematics)#Duality in logic and set theory|dualities]] of the former with many of the [[Constructivism (mathematics)|constructive]] properties of the latter.
Linear logic lends itself to many different presentations, explanations, and intuitions.
Line 55 ⟶ 56:
| colspan="2" |with
|-
|{{Anchor|⅋}}⅋
|multiplicative [[Logical disjunction|disjunction]]
| colspan="2" |par
Line 115 ⟶ 116:
==Sequent calculus presentation==
One way of defining linear logic is as a [[sequent calculus]]. We use the letters {{math| Γ}} and {{math| Δ}} to range over
We now give [[Sequent calculus#Inference rules|inference rules]] describing how to build proofs of sequents.
First, to formalize the fact that we do not care about the order of propositions inside a context, we add the structural rule of [[exchange rule|exchange]]:
Line 278 ⟶ 279:
===Exponentials===
The exponentials are used to give controlled access to weakening and contraction. Specifically, we add structural rules of weakening and contraction for
{| style="margin:auto"
Line 303 ⟶ 304:
|}
and use the following logical rules, in which {{math|?Γ}} stands for a list of propositions each prefixed with {{math|?}}:
{| style="margin:auto"
Line 328 ⟶ 329:
|}
One might observe that the rules for the exponentials follow a different pattern from the rules for the other connectives, resembling the inference rules governing modalities in sequent calculus formalisations of the [[normal modal logic]] [[S4 (modal logic)|S4]], and that there is no longer such a clear symmetry between the duals {{math|!}} and {{math|?}}.
This situation is remedied in alternative presentations of CLL (e.g., the [[Logic of unity|LU]] presentation).
Line 377 ⟶ 378:
|}
Linear distributions are fundamental in the proof theory of linear logic.
; Other implications :
Line 413 ⟶ 414:
==Encoding classical/intuitionistic logic in linear logic==
Both intuitionistic and classical implication can be recovered from linear implication by inserting exponentials: intuitionistic implication is encoded as {{math|!<VAR>A</VAR> ⊸ <VAR>B</VAR>}}, while classical implication can be encoded as {{math|!?<VAR>A</VAR> ⊸ ?<VAR>B</VAR>}} or {{math|!<VAR>A</VAR> ⊸ ?!<VAR>B</VAR>}} (or a variety of alternative possible translations).
Formally, there exists a translation of formulas of intuitionistic logic to formulas of linear logic in a way that guarantees that the original formula is provable in intuitionistic logic if and only if the translated formula is provable in linear logic. Using the [[Gödel–Gentzen negative translation]], we can thus embed classical [[first-order logic]] into linear first-order logic.
==The resource interpretation==
Line 428 ⟶ 429:
Multiplicative conjunction {{math|(<VAR>A</VAR> ⊗ <VAR>B</VAR>)}} denotes simultaneous occurrence of resources, to be used as the consumer directs. For example, if you buy a stick of gum and a bottle of soft drink, then you are requesting {{math|<VAR>gum</VAR> ⊗ <VAR>drink</VAR>}}. The constant 1 denotes the absence of any resource, and so functions as the unit of ⊗.
Additive conjunction {{math|(<VAR>A</VAR> & <VAR>B</VAR>)}} represents alternative occurrence of resources, the choice of which the consumer controls. If in the vending machine there is a packet of chips, a candy bar, and a can of soft drink, each costing one dollar, then for that price you can buy exactly one of these products. Thus we write {{math|<VAR>$1</VAR> ⊸ (<VAR>candy</VAR> & <VAR>chips</VAR> & <VAR>drink</VAR>)}}. We do ''not'' write {{math|<VAR>$1</VAR> ⊸ (<VAR>candy</VAR> ⊗ <VAR>chips</VAR> ⊗ <VAR>drink</VAR>)}}, which would imply that one dollar suffices for buying all three products together. However, from {{math|(<VAR>$1</VAR> ⊸ (<VAR>candy</VAR> & <VAR>chips</VAR> & <VAR>drink</VAR>)) ⊗ (<VAR>$1</VAR> ⊸ (<VAR>candy</VAR> & <VAR>chips</VAR> & <VAR>drink</VAR>)) ⊗ (<VAR>$1</VAR> ⊸ (<VAR>candy</VAR> & <VAR>chips</VAR> & <VAR>drink</VAR>))}}, we can correctly deduce {{math|<VAR>$3</VAR> ⊸ (<VAR>candy</VAR> ⊗ <VAR>chips</VAR> ⊗ <VAR>drink</VAR>)}}, where {{math|<VAR>$3</VAR> :{{=}} <VAR>$1</VAR> ⊗ <VAR>$1</VAR> ⊗ <VAR>$1</VAR>}}. The unit ⊤ of additive conjunction can be seen as a wastebasket <!--or [[Garbage collection (computer science)|garbage collector]]--> for unneeded resources. For example, we can write {{math|<VAR>$3</VAR> ⊸ (<VAR>candy</VAR> ⊗ ⊤)}} to express that with three dollars you can get a candy bar and some other stuff, without being more specific (for example, chips and a drink, or $2, or $1 and chips, etc.).
Additive disjunction {{math|(<VAR>A</VAR> ⊕ <VAR>B</VAR>)}} represents alternative occurrence of resources, the choice of which the machine controls. For example, suppose the vending machine permits gambling: insert a dollar and the machine may dispense a candy bar, a packet of chips, or a soft drink. We can express this situation as {{math|<VAR>$1</VAR> ⊸ (<VAR>candy</VAR> ⊕ <VAR>chips</VAR> ⊕ <VAR>drink</VAR>)}}. The constant 0 represents a product that cannot be made, and thus serves as the unit of ⊕ (a machine that might produce {{math|<VAR>A</VAR>}} or {{math|0}} is as good as a machine that always produces {{math|<VAR>A</VAR>}} because it will never succeed in producing a 0). So unlike above, we cannot deduce {{math|<VAR>$3</VAR> ⊸ (<VAR>candy</VAR> ⊗ <VAR>chips</VAR> ⊗ <VAR>drink</VAR>)}} from this.
==Other proof systems==
Line 481 ⟶ 480:
==Decidability/complexity of entailment==
The [[entailment]] relation in full CLL is [[Undecidable problem|undecidable]].
CLL, the decision problem has varying complexity:
* Multiplicative linear logic (MLL): only the multiplicative connectives. MLL entailment is [[NP-complete]], even restricting to [[Horn clauses]] in the purely implicative fragment,
* Multiplicative-additive linear logic (MALL): only multiplicatives and additives (i.e., exponential-free). MALL entailment is [[PSPACE-complete]].<ref name="Lincoln+92" />
* Multiplicative-exponential linear logic (MELL): only multiplicatives and exponentials. By reduction from the reachability problem for [[Petri nets]],
* Affine linear logic (that is linear logic with weakening, an extension rather than a fragment) was shown to be decidable, in 1995.
==Variants==
Line 513 ⟶ 511:
* [[Proof net]]s
* [[Uniqueness type]]
==Notes==
{{Reflist|2}}▼
==References==
*{{cite journal|last1=Baez|first1=John|author1-link=John Baez|last2=Stay|first2=Mike|year=2008|title=Physics, Topology, Logic and Computation: A Rosetta Stone|journal=New Structures of Physics|editor=Bob Coecke|editor-link=Bob Coecke|url=http://math.ucr.edu/home/baez/rosetta.pdf}}
*{{Cite journal|last=Bimbó|first=Katalin|author-link=Katalin Bimbó|date=2015-09-13|title=The decidability of the intensional fragment of classical linear logic|journal=Theoretical Computer Science|volume=597|pages=1–17|doi=10.1016/j.tcs.2015.06.019|issn=0304-3975|doi-access=free}}
▲{{Reflist}}
*{{cite journal|last1=Cockett|first1=J. Robin|author1-link=Robin Cockett|last2=Seely|first2=Robert|year=1997|title=Weakly distributive categories|journal=Journal of Pure and Applied Algebra|volume=114|issue=2|pages=133–173|doi=10.1016/0022-4049(95)00160-3 }}
*{{cite book|last=Di Cosmo|first=Roberto|year=1996|title=The Linear Logic Primer|type=Course notes|chapter=2|url=http://www.dicosmo.org/CourseNotes/LinLog/}}
*{{cite journal|last1=De Paiva|first1=V.|author1-link=Valeria de Paiva|last2=Van Genabith|first2=J.|last3=Ritter|first3=E.|year=1999|title=Dagstuhl Seminar 99341 on Linear Logic and Applications|journal=Drops-Idn/V2/Document/10.4230/Dagsemrep.248|pages=1–21|publisher=Schloss Dagstuhl – Leibniz-Zentrum für Informatik|doi=10.4230/DagSemRep.248|doi-access=free|url=http://www.dagstuhl.de/Reports/99/99341.pdf}}
*{{cite journal|last1=Girard|first1=Jean-Yves|author1-link=Jean-Yves Girard|year=1987|title=Linear logic|journal=Theoretical Computer Science|volume=50|issue=1|pages=1–102|doi=10.1016/0304-3975(87)90045-4|hdl=10338.dmlcz/120513|url=https://girard.perso.math.cnrs.fr/linear.pdf|doi-access=free}}
*{{Cite tech report|last1=Gunter|first1=C. A.|last2=Gehlot|first2=V.|year=1989|title=Nets as Tensor Theories|institution=University of Pennsylvania|number=MS-CIS-89-68|url=http://seclab.illinois.edu/wp-content/uploads/2011/04/GunterG89.pdf}}
*{{Cite conference|last=Kanovich|first=Max I.|date=1992-06-22|title=Horn programming in linear logic is NP-complete|conference=Seventh Annual IEEE Symposium on Logic in Computer Science, 1992. LICS '92. Proceedings|book-title=Seventh Annual IEEE Symposium on Logic in Computer Science, 1992. LICS '92. Proceedings|pages=200–210|doi=10.1109/LICS.1992.185533|isbn=0-8186-2735-2}}
*{{Cite conference|last=Kopylov|first=A. P.|date=1995-06-01|title=Decidability of linear affine logic|conference=Tenth Annual IEEE Symposium on Logic in Computer Science, 1995. LICS '95. Proceedings|book-title=Tenth Annual IEEE Symposium on Logic in Computer Science, 1995. LICS '95. Proceedings|pages=496–504|doi=10.1109/LICS.1995.523283|citeseerx=10.1.1.23.9226|isbn=0-8186-7050-9}}
*{{cite journal|last1=Lincoln|first1=Patrick|last2=Mitchell|first2=John|last3=Scedrov|first3=Andre|last4=Shankar|first4=Natarajan|year=1992|title=Decision Problems for Propositional Linear Logic|journal=Annals of Pure and Applied Logic|volume=56|issue=1–3|pages=239–311|doi=10.1016/0168-0072(92)90075-B|doi-access=free}}
*{{cite journal|last1=Lincoln|first1=Patrick|last2=Winkler|first2=Timothy|year=1994|title=Constant-only multiplicative linear logic is NP-complete|journal=Theoretical Computer Science|volume=135|pages=155–169|doi=10.1016/0304-3975(94)00108-1|doi-access=free}}
*{{Cite journal|last=Straßburger|first=Lutz|date=2019-05-10|title=On the decision problem for MELL|journal=Theoretical Computer Science|volume=768|pages=91–98|doi=10.1016/j.tcs.2019.02.022|issn=0304-3975|doi-access=free}}
==Further reading==
* {{cite web |title=Introduction to Linear Logic |last=Braüner| first=Torben|url=http://www.brics.dk/LS/96/6/BRICS-LS-96-6.pdf |date=December 1996|publisher=Basic Research in Computer Science (BRICS)|volume=LS-96/6|series=BRICS Lecture Series |access-date=2025-05-20}}
* {{cite book |last1=Di Cosmo |first1=Roberto |last2=Danos |first2=Vincent |year=1992|title=The Linear Logic Primer |url=https://www.dicosmo.org/CourseNotes/LinLog/ }}
*{{cite SEP|title=Linear Logic|url-id=logic-linear|date=2023-09-16|edition=Fall 2023|author-last=Di Cosmo|author-first=Roberto|author-last2=Miller|author-first2=Dale |author-link2=Dale Miller (academic)}}
* {{cite book |last1=Girard |first1=Jean-Yves |last2=Lafont |first2=Yves |last3=Taylor |first3=Paul |year=1989 |title=Proofs and Types |publisher=Cambridge University Press |url=http://www.cs.man.ac.uk/~pt/stable/Proofs+Types.html |archive-url=https://web.archive.org/web/20160704202340/http://www.cs.man.ac.uk/~pt/stable/Proofs+Types.html |archive-date=4 July 2016 }}
* {{cite book |last=Hoare
*{{cite conference | last = Lafont
* {{cite web |title=Introduction to Linear Logic |last=Lincoln |first=Patrick|url=http://www.csl.sri.com/~lincoln/papers/sigact92.ps |format=Postscript }}
* {{cite book|last=Miller |first=Dale |year=2004 |chapter=Overview of Linear Logic Programming |title=Linear Logic in Computer Science |editor1-last=Ehrhard |editor2-last=Girard |editor3-last=Ruet |editor4-last=Scott |publisher=Cambridge University Press |series=London Mathematical Society Lecture Notes |volume=316 |url=http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/llp.pdf }}
* {{cite book | last = Troelstra | first = A. S. | author-link = Anne Sjerp Troelstra | year = 1992 | title = Lectures on Linear Logic | publisher = CSLI Publications | ___location = Stanford | series = CSLI Lecture Notes | volume = 29 | isbn = 978-0937073773 }}
* {{cite book |last1=Troelstra |first1=A. S.| author1-link = Anne Sjerp Troelstra|last2=Schwichtenberg |first2=H. |author2-link=Helmut Schwichtenberg|year=2000|orig-year=1996 |title=Basic Proof Theory |series=Cambridge Tracts in Theoretical Computer Science |volume=43|___location=Cambridge |publisher=Cambridge University Press |pages=XII, 417|edition=2nd|isbn=9780521779111|doi=10.1017/CBO9781139168717|oclc=951181823}}
* {{cite web |title=A Taste of Linear Logic |last=Wadler| first=Philip|url=http://homepages.inf.ed.ac.uk/wadler/topics/linear-logic.html }}
▲* Hoare, C. A. R., 1985. ''Communicating Sequential Processes''. Prentice-Hall International. {{isbn|0-13-153271-5}}
▲* Lafont, Yves, 1993. ''Introduction to Linear Logic''. Lecture notes from TEMPUS Summer School on ''Algebraic and Categorical Methods in Computer Science'', Brno, Czech Republic.
==External links==
Line 538 ⟶ 567:
* {{Commons category-inline}}
* [http://bach.istc.kobe-u.ac.jp/llprover/ A Linear Logic Prover (llprover)] {{Webarchive|url=https://web.archive.org/web/20160404181455/http://bach.istc.kobe-u.ac.jp/llprover/ |date=2016-04-04 }}, available for use online, from: Naoyuki Tamura / Dept of CS / Kobe University / Japan
* [https://click-and-collect.linear-logic.org/ Click And Collect] interactive linear logic prover, available online
{{Non-classical logic}}
|