Content deleted Content added
Magenta.lily (talk | contribs) m Changed transpose notation to match that of the transpose article |
\top → \mathsf{T} (we should not use the top symbol to indicate transpose |
||
(41 intermediate revisions by 28 users not shown) | |||
Line 1:
{{Short description|Property of a mathematical matrix}}
{{hatnote|Not to be confused with [[Positive matrix]] and [[Totally positive matrix]].}}
{{use dmy dates|date=June 2024}}
In [[mathematics]], a symmetric matrix <math>M</math> with [[real number|real]] entries is '''positive-definite''' if the real number <math>
{{cite book
'''positive-definite''' if the real number <math>z^* Mz</math> is positive for every nonzero complex column vector <math>z,</math> where <math>z^*</math> denotes the conjugate transpose of <math>z.</math>▼
|first = Adriaan |last = van den Bos
|date = March 2007
|section = Appendix C: Positive semidefinite and positive definite matrices
|title = Parameter Estimation for Scientists and Engineers |edition=online
|publisher = John Wiley & Sons
|isbn = 978-047-017386-2
|pages = 259–263
|doi = 10.1002/9780470173862 |doi-access=
|section-url = https://www.doi.org/10.1002/9780470173862.app3 |type = .pdf
}} Print ed. {{ISBN|9780470147818}}
</ref>
▲More generally, a [[Hermitian matrix]] (that is, a [[complex matrix]] equal to its [[conjugate transpose]]) is '''positive-definite''' if the real number <math>\mathbf{z}^*
'''Positive semi-definite''' matrices are defined similarly, except that the scalars
Some authors use more general definitions of definiteness, permitting the matrices to be non-symmetric or non-Hermitian. The properties of these generalized definite matrices are explored in {{alink|Extension for non-Hermitian square matrices}}, below, but are not the main focus of this article.
A matrix is thus positive-definite if and only if it is the matrix of a [[positive-definite quadratic form]] or [[Hermitian form]]. In other words, a matrix is positive-definite if and only if it defines an [[inner product]].▼
== Ramifications ==
▲
Positive-definite and positive-semidefinite matrices can be characterized in many ways, which may explain the importance of the concept in various parts of mathematics. A matrix {{mvar|M}} is positive-definite if and only if it satisfies any of the following equivalent conditions.
*
*
*
* There exists an [[invertible matrix]] <math>B</math> with conjugate transpose <math>B^*</math> such that <math>M = B^* B.</math>
A matrix is positive semi-definite if it satisfies similar equivalent conditions where "positive" is replaced by "nonnegative", "invertible matrix" is replaced by "matrix", and the word "leading" is removed.
Positive-definite and positive-semidefinite real matrices are at the basis of [[convex optimization]], since, given a [[function of several real variables]] that is twice [[differentiable function|differentiable]], then if its [[Hessian matrix]] (matrix of its second partial derivatives) is positive-definite at a point
The set of positive definite matrices is an [[Open set|open]] [[convex cone]], while the set of positive semi-definite matrices is a [[closed set|closed]] convex cone.<ref>
{{cite book
|last1=Boyd |first1=Stephen
|last2=Vandenberghe |first2=Lieven
|date=2004-03-08
|title=Convex Optimization
|publisher=Cambridge University Press
|isbn=978-0-521-83378-3
|doi=10.1017/cbo9780511804441
}}
</ref>
== Definitions ==
In the following definitions, <math>\mathbf{x}^\
=== Definitions for real matrices ===
An <math>n \times n</math> symmetric real matrix <math>M</math> is said to be '''positive-definite''' if <math>\mathbf{x}^\
{{Equation box 1
|indent =
|title=
|equation = <math>M \text{ positive-definite} \quad \iff \quad \mathbf{x}^\
|cellpadding= 6
|border
|border colour = #0073CF
|background colour=var(--background-color-success-subtle,#
An <math>n \times n</math> symmetric real matrix <math>M</math> is said to be '''positive-semidefinite''' or '''non-negative-definite''' if <math>\mathbf{x}^\
{{Equation box 1
|indent =
|title=
|equation = <math>M \text{ positive semi-definite} \quad \iff \quad \mathbf{x}^\
|cellpadding= 6
|border
|border colour = #0073CF
|background colour=var(--background-color-success-subtle,#
An <math>n \times n</math> symmetric real matrix <math>M</math> is said to be '''negative-definite''' if <math>\mathbf{x}^\
{{Equation box 1
|indent =
|title=
|equation = <math>M \text{ negative-definite} \quad \iff \quad \mathbf{x}^\
|cellpadding= 6
|border
|border colour = #0073CF
|background colour=var(--background-color-success-subtle,#
An <math>n \times n</math> symmetric real matrix <math>M</math> is said to be '''negative-semidefinite''' or '''non-positive-definite''' if <math>\mathbf{x}^\
{{Equation box 1
|indent =
|title=
|equation = <math>M \text{ negative semi-definite} \quad \iff \quad \mathbf{x}^\
|cellpadding= 6
|border
|border colour = #0073CF
|background colour=var(--background-color-success-subtle,#
An <math>n \times n</math> symmetric real matrix which is neither positive semidefinite nor negative semidefinite is called '''indefinite'''.
=== Definitions for complex matrices ===
The following definitions all involve the term <math>\mathbf{
An <math>n \times n</math> Hermitian complex matrix <math>M</math> is said to be '''positive-definite''' if <math>\mathbf{
{{Equation box 1
|indent =
|title=
|equation = <math>M \text{ positive-definite} \quad \iff \quad \mathbf{
|cellpadding= 6
|border
|border colour = #0073CF
|background colour=var(--background-color-success-subtle,#
An <math>n \times n</math> Hermitian complex matrix <math>M</math> is said to be '''positive semi-definite''' or '''non-negative-definite''' if <math>
{{Equation box 1
|indent =
|title=
|equation = <math>M \text{ positive semi-definite} \quad \iff \quad \mathbf{
|cellpadding= 6
|border
|border colour = #0073CF
|background colour=var(--background-color-success-subtle,#
An <math>n \times n</math> Hermitian complex matrix <math>M</math> is said to be '''negative-definite''' if <math>\mathbf{
{{Equation box 1
|indent =
|title=
|equation = <math>M \text{ negative-definite} \quad \iff \quad \mathbf{
|cellpadding= 6
|border
|border colour = #0073CF
|background colour=var(--background-color-success-subtle,#
An <math>n \times n</math> Hermitian complex matrix <math>M</math> is said to be '''negative semi-definite''' or '''non-positive-definite''' if <math>\mathbf{
{{Equation box 1
|indent =
|title=
|equation = <math>M \text{ negative semi-definite} \quad \iff \quad \mathbf{
|cellpadding= 6
|border
|border colour = #0073CF
|background colour=var(--background-color-success-subtle,#
An <math>n \times n</math> Hermitian complex matrix which is neither positive semidefinite nor negative semidefinite is called '''indefinite'''.
Line 122 ⟶ 148:
Since every real matrix is also a complex matrix, the definitions of "definiteness" for the two classes must agree.
For complex matrices, the most common definition says that <math>M</math> is positive-definite if and only if <math>\mathbf{z}^* M\mathbf{z}</math> is real and positive for every non-zero complex column vectors <math>\mathbf
By this definition, a positive-definite ''real'' matrix <math>M</math> is Hermitian, hence symmetric; and <math>\mathbf{z}^\
<math display="block">M = \begin{bmatrix} 1 & 1 \\
then for any real vector <math>\mathbf{z}</math> with entries <math>a</math> and <math>b</math> we have <math>\mathbf{z}^\
<math display="block">\mathbf{z}^* M
which is not real. Therefore, <math>M</math> is not positive-definite.
On the other hand, for a ''symmetric'' real matrix <math>M,</math>
=== Notation ===
If a Hermitian matrix <math>M</math> is positive semi-definite, one sometimes writes <math>M \succeq 0</math> and if <math>M</math> is positive-definite one writes <math>M \succ 0.</math>
The notion comes from [[functional analysis]] where positive semidefinite matrices define [[positive operator]]s. If two matrices <math>A</math> and <math>B</math> satisfy <math>B - A \succeq 0,</math>
A common alternative notation is <math>M \geq 0,</math>
== Examples ==
{{unordered list
| The [[identity matrix]] <math>I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}</math> is positive-definite (and as such also positive semi-definite). It is a real symmetric matrix, and, for any non-zero column vector '''z''' with real entries ''a'' and ''b'', one has
<math display="block"> \mathbf{z}^\
Seen as a complex matrix, for any non-zero column vector ''z'' with complex entries ''a'' and ''b'' one has
<math display="block">\mathbf{z}^*I\mathbf{z} = \begin{bmatrix} \overline{a} & \overline{b} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b\end{bmatrix} = \overline{a}a + \overline{b}b = |a|^2 + |b|^2.</math>
Line 153 ⟶ 179:
is positive-definite since for any non-zero column vector '''z''' with entries ''a'', ''b'' and ''c'', we have
<math display="block">\begin{align}
\mathbf{z}^\
&= \begin{bmatrix} (2a - b) & (-a + 2b - c) & (-b + 2c) \end{bmatrix}
\begin{bmatrix} a \\ b \\ c \end{bmatrix} \\
&= (2a - b)a + (-a + 2b - c)b + (-b + 2c)c \\
&= 2a^2 - ba - ab + 2b^2 - cb - bc + 2c^2 \\
Line 163 ⟶ 189:
\end{align}</math>
This result is a sum of squares, and therefore non-negative; and is zero only if <math>a = b = c = 0,</math>
| For any real [[invertible matrix]] <math>A,</math>
| The example <math>M</math> above shows that a matrix in which some elements are negative may still be positive definite. Conversely, a matrix whose entries are all positive is not necessarily positive definite, as for example
<math display="block">N = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix},</math>
for which <math>\begin{bmatrix} -1 & 1 \end{bmatrix}N\begin{bmatrix} -1 & 1 \end{bmatrix}^\
}}
Line 174 ⟶ 200:
* <math>M</math> is positive definite if and only if all of its eigenvalues are positive.
* <math>M</math> is positive semi-definite if and only if all of its eigenvalues are non-negative.
* <math>M</math> is negative definite if and only if all of its eigenvalues are negative.
* <math>M</math> is negative semi-definite if and only if all of its eigenvalues are non-positive.
* <math>M</math> is indefinite if and only if it has both positive and negative eigenvalues.
Let <math>
With this in mind, the one-to-one change of variable <math>\mathbf{y} = P\mathbf{z}</math> shows that <math>\mathbf{z}^* M\mathbf{z}</math> is real and positive for any complex vector <math>\mathbf
== Decomposition ==
{{See also|Gram matrix}}
Let <math>M</math> be an <math>n \times n</math> [[Hermitian matrix]].
Line 189 ⟶ 215:
of a matrix <math>B</math> with its [[conjugate transpose]].
When <math>M</math> is real, <math>B</math> can be real as well and the decomposition can be written as <math display="block">M = B^\mathsf{T} B.</math>
<math>M</math> is positive definite if and only if such a decomposition exists with <math>B</math> [[Invertible matrix|invertible]].
More generally, <math>M</math> is positive semidefinite with rank <math>k</math> if and only if a decomposition exists with a <math>k \times n</math> matrix <math>B</math> of full row rank (i.e. of rank <math>k</math>).
Moreover, for any decomposition <math>M = B^* B,</math>
{{math proof | proof =
If <math>M = B^* B,</math>
If moreover <math>B</math> is invertible then the inequality is strict for <math>x \neq 0,</math>
If <math>B</math> is <math>k \times n</math> of rank <math>k,</math>
In the other direction, suppose <math>M</math> is positive semidefinite.
Since <math>M</math> is Hermitian, it has an [[Eigendecomposition of a matrix#Decomposition for special matrices|eigendecomposition]] <math>M = Q^{-1} D Q</math> where <math>Q</math> is [[unitary matrix|unitary]] and <math>D</math> is a diagonal matrix whose entries are the eigenvalues of <math>M</math>
Since <math>M</math> is positive semidefinite, the eigenvalues are non-negative real numbers, so one can define <math>D^{\frac{1}{2}}</math> as the diagonal matrix whose entries are non-negative square roots of eigenvalues.
Then <math>M = Q^{-1} D Q = Q^* D Q = Q^* D^{\frac{1}{2}} D^{\frac{1}{2}} Q = Q^* D^{\frac{1}{2}*} D^{\frac{1}{2}} Q = B^* B</math> for <math>B = D^{\frac{1}{2}} Q.</math>
If moreover <math>M</math> is positive definite, then the eigenvalues are (strictly) positive, so <math>D^{\frac{1}{2}}</math> is invertible, and hence <math>B = D^{\frac{1}{2}} Q</math> is invertible as well.
If <math>M</math> has rank <math>k,</math>
Cutting the zero rows gives a <math>k \times n
}}
The columns <math>b_1, \dots, b_n</math> of <math>B</math> can be seen as vectors in the [[complex vector space|complex]] or [[real vector space]] <math>\mathbb{R}^k,</math>
Then the entries of <math>M</math> are [[inner product]]s (that is [[dot product]]s, in the real case) of these vectors
<math display="block">M_{ij} = \langle b_i, b_j\rangle.</math>
In other words, a Hermitian matrix <math>M</math> is positive semidefinite if and only if it is the [[Gram matrix]] of some vectors <math>b_1, \dots, b_n.</math>
It is positive definite if and only if it is the Gram matrix of some [[linearly independent]] vectors.
In general, the rank of the Gram matrix of vectors <math>b_1, \dots, b_n</math> equals the dimension of the space [[Linear span|spanned]] by these vectors.<ref>{{harvtxt|Horn|Johnson|2013}}, p. 441, Theorem 7.2.10</ref>
=== Uniqueness up to unitary transformations ===
The decomposition is not unique:
if <math>M = B^* B</math> for some <math>k \times n</math> matrix <math>B</math> and if <math>Q</math> is any [[unitary matrix|unitary]] <math>k \times k</math> matrix (meaning <math>Q^* Q = Q Q^* = I</math>),
then <math>M = B^* B = B^* Q^* Q B = A^* A</math> for <math>A = Q B.</math>
However, this is the only way in which two decompositions can differ:
More formally, if <math>A</math> is a <math>k \times n</math> matrix and <math>B</math> is a <math>\ell \times n</math> matrix such that <math>A^* A = B^* B,</math>
then there is a <math>\ell \times k</math> matrix <math>Q</math> with orthonormal columns (meaning <math>Q^* Q = I_{k \times k}</math>) such that <math>B = Q A.</math>
When <math>\ell = k</math> this means <math>Q</math> is [[unitary matrix|unitary]].
This statement has an intuitive geometric interpretation in the real case:
let the columns of <math>A</math> and <math>B</math> be the vectors <math>a_1,\dots,a_n</math> and <math>b_1, \dots, b_n</math> in <math>\mathbb{R}^k.</math>
A real unitary matrix is an [[orthogonal matrix]], which describes a [[rigid transformation]] (an isometry of Euclidean space <math>\mathbb{R}^k</math>) preserving the 0 point (i.e. [[Rotation matrix|rotations]] and [[Reflection matrix|reflections]], without translations).
Therefore, the dot products <math>a_i \cdot a_j</math> and <math>b_i \cdot b_j</math> are equal if and only if some rigid transformation of <math>\mathbb{R}^k</math> transforms the vectors <math>a_1,\dots,a_n</math> to <math>b_1,\dots,b_n</math> (and 0 to 0).
=== Square root ===
{{main|Square root of a matrix}}
A Hermitian matrix <math>M</math> is positive semidefinite if and only if there is a positive semidefinite matrix <math>B</math> (in particular <math>B</math> is Hermitian, so <math>B^* = B</math>) satisfying <math>M = B B.</math>
When <math>M</math> is positive definite, so is <math>M^\frac{1}{2},</math>
The non-negative square root should not be confused with other decompositions <math>M = B^* B.</math>
Some authors use the name ''square root'' and <math>M^\frac{1}{2}</math> for any such decomposition, or specifically for the [[Cholesky decomposition]],
or any decomposition of the form <math>M = B B;</math>
others only use it for the non-negative square root.
If <math>
=== Cholesky decomposition ===
A Hermitian positive semidefinite matrix <math>M</math> can be written as <math>M =
If <math>M</math> is positive definite, then the diagonal of <math>L</math> is positive and the Cholesky decomposition is unique. Conversely if <math>L</math> is lower triangular with nonnegative diagonal then <math>
The Cholesky decomposition is especially useful for efficient numerical calculations.
A closely related decomposition is the [[Cholesky decomposition#LDL decomposition|LDL decomposition]], <math>M = L D L^*,</math>
=== Williamson theorem ===
Any <math>2n\times 2n </math> positive definite Hermitian real matrix <math>M </math> can be diagonalized via symplectic (real) matrices. More precisely, [[Williamson theorem|Williamson's theorem]] ensures the existence of symplectic <math>S\in\mathbf{Sp}(2n,\mathbb{R}) </math> and diagonal real positive <math>D\in\mathbb{R}^{n\times n} </math> such that <math>SMS^T=D\oplus D </math>.
== Other characterizations ==
Let <math>M</math> be an <math>n \times n</math> [[Hermitian matrix|real symmetric matrix]], and let <math>B_1(M)
* <math>B_1(
* <math>M \succeq 0</math> if and only if <math>B_1(M)</math> is an ellipsoid, or an ellipsoidal cylinder.▼
* <math>M \succ 0</math> if and only if <math>B_1(M)</math> is bounded, that is, it is an ellipsoid.▼
* If <math>N \succ 0,</math>
* If <math>N \succ 0,</math>
▲* <math>B_1(vv^\operatorname{T})</math> is a solid slab sandwiched between <math>\pm \{w: \langle w, v\rangle = 1\}</math>.
▲* <math>M\succeq 0</math> if and only if <math>B_1(M)</math> is an ellipsoid, or an ellipsoidal cylinder.
▲* <math>M\succ 0</math> if and only if <math>B_1(M)</math> is bounded, that is, it is an ellipsoid.
▲* If <math>N\succ 0</math>, then <math>M \succeq N</math> if and only if <math>B_1(M) \subseteq B_1(N)</math>; <math>M \succ N</math> if and only if <math>B_1(M) \subseteq \operatorname{int}(B_1(N))</math>.
▲* If <math>N\succ 0</math> , then <math>M \succeq \frac{vv^\operatorname{T}}{v^\operatorname{T} N v}</math> for all <math>v \neq 0</math> if and only if <math display="inline">B_1(M) \subset \bigcap_{v^\operatorname{T} N v = 1} B_1(vv^\operatorname{T})</math>. So, since the polar dual of an ellipsoid is also an ellipsoid with the same principal axes, with inverse lengths, we have <math display="block">B_1(N^{-1}) = \bigcap_{v^\operatorname{T} N v = 1} B_1(vv^\operatorname{T}) = \bigcap_{v^\operatorname{T} N v = 1}\{w: |\langle w, v\rangle| \leq 1\}</math> That is, if <math>N</math> is positive-definite, then <math>M \succeq \frac{vv^\operatorname{T}}{v^\operatorname{T} N v}</math> for all <math>v\neq 0</math> if and only if <math>M \succeq N^{-1}</math>
Let <math>M</math> be an <math>n \times n</math> [[Hermitian matrix]]. The following properties are equivalent to <math>M</math> being positive definite:
; The associated sesquilinear form is an inner product : The [[sesquilinear form]] defined by <math>M</math> is the function <math>\langle \cdot, \cdot \rangle</math> from <math>\
; Its leading principal minors are all positive : The
A positive semidefinite matrix is positive definite if and only if it is [[invertible matrix|invertible]].<ref>{{harvtxt|Horn|Johnson|2013}}, p. 431, Corollary 7.1.7</ref>
Line 267 ⟶ 295:
== Quadratic forms ==
{{Main|Definite quadratic form}}
The (purely) [[quadratic form]] associated with a real <math>n \times n</math> matrix <math>M</math> is the function <math>Q : \mathbb{R}^n \to \mathbb{R}</math> such that <math>Q(\mathbf{x}) = \mathbf{x}^\
A symmetric matrix <math>M</math> is positive definite if and only if its quadratic form is a [[strictly convex function]].
More generally, any [[quadratic function]] from <math>\mathbb{R}^n</math> to <math>\mathbb{R}</math> can be written as <math>\mathbf{x}^\
'''Theorem:''' This quadratic function is strictly convex, and hence has a unique finite global minimum, if and only if <math>M</math> is positive definite.
'''Proof:''' If <math>M</math> is positive definite, then the function is strictly convex. Its gradient is zero at the unique point of <math>M^{-1} \mathbf{b},</math>
For this reason, positive definite matrices play an important role in [[optimization (mathematics)|optimization]] problems.
Line 282 ⟶ 310:
One symmetric matrix and another matrix that is both symmetric and positive definite can be [[diagonalizable matrix#Simultaneous diagonalization|simultaneously diagonalized]]. This is so although simultaneous diagonalization is not necessarily performed with a [[Matrix similarity|similarity transformation]]. This result does not extend to the case of three or more matrices. In this section we write for the real case. Extension to the complex case is immediate.
Let <math>M</math> be a symmetric and <math>N</math> a symmetric and positive definite matrix. Write the generalized eigenvalue equation as <math>\left(M - \lambda N\right)\mathbf{x} = 0</math> where we impose that <math>\mathbf{x}</math> be normalized, i.e. <math>\mathbf{x}^\
Note that this result does not contradict what is said on simultaneous diagonalization in the article [[diagonalizable matrix#Simultaneous diagonalization|Diagonalizable matrix]], which refers to simultaneous diagonalization by a similarity transformation. Our result here is more akin to a simultaneous diagonalization of two quadratic forms, and is useful for optimization of one form under conditions on the other.
== Properties ==
=== Induced partial ordering ===
For arbitrary square matrices <math>M,</math>
=== Inverse of positive definite matrix ===
Every positive definite matrix is [[invertible matrix|invertible]] and its inverse is also positive definite.<ref>{{harvtxt|Horn|Johnson|2013}}, p. 438, Theorem 7.2.1</ref> If <math>M \geq N > 0</math> then <math>N^{-1} \geq M^{-1} > 0.</math>
=== Scaling ===
Line 301 ⟶ 329:
* If <math>M</math> is positive-definite and <math>N</math> is positive-semidefinite, then the sum <math>M + N</math> is also positive-definite.
=== Multiplication ===
* If <math>M</math> and <math>N</math> are positive definite, then the products <math>
* If <math>M</math> is positive semidefinite, then <math>A^*
=== Trace ===
The diagonal entries <math>m_{ii}</math> of a positive-semidefinite matrix are real and non-negative. As a consequence the [[trace (linear algebra)|trace]], <math>\operatorname{tr}(M) \
<math display="block">\left|m_{ij}\right| \leq \sqrt{m_{ii}m_{jj}} \quad \forall i, j</math>
▲and thus, when <math>n \ge 1</math>,
<math display="block"> \max_{i,j} \left|m_{ij}\right| \leq \max_i m_{ii}</math>
An <math>n \times n</math> Hermitian matrix <math>M</math> is positive definite if it satisfies the following trace inequalities:<ref>{{cite journal | title=Bounds for Eigenvalues using Traces |
<math display="block">
Another important result is that for any <math>M</math> and <math>N</math> positive-semidefinite matrices, <math>\operatorname{tr}(MN) \ge 0 .</math>
=== Hadamard product ===
If <math>M, N \geq 0,</math>
Regarding the Hadamard product of two positive semidefinite matrices <math>M = (m_{ij}) \geq 0,</math>
* Oppenheim's inequality: <math>\det(M \circ N) \geq \det (N) \prod\nolimits_i m_{ii}.</math><ref>{{harvtxt|Horn|Johnson|2013}}, p. 509, Theorem 7.8.16</ref>
* <math>\det(M \circ N) \geq \det(M) \det(N).</math>
=== Kronecker product ===
If <math>M, N \geq 0,</math>
=== Frobenius product ===
If <math>M, N \geq 0,</math>
=== Convexity ===
The set of positive semidefinite symmetric matrices is [[convex set|convex]].
<math display="block">\mathbf{x}^\
This property guarantees that [[semidefinite programming]] problems converge to a globally optimal solution.
=== Relation with cosine ===
The positive-definiteness of a matrix <math>A</math> expresses that the angle <math>\theta</math> between any vector <math>\mathbf
<math display="block">\cos\theta = \frac{ \mathbf{x}^\mathsf{T} A\mathbf{x} }{\lVert \mathbf{x} \rVert \lVert A\mathbf{x} \rVert} = \frac{\langle \mathbf{x}, A\mathbf{x} \rangle}{\lVert \mathbf{x} \rVert \lVert A\mathbf{x} \rVert} , \theta = \theta(\mathbf{x}, A \mathbf{x})
=== Further properties ===
# If <math>M</math> is a symmetric [[Toeplitz matrix]], i.e. the entries <math>m_{ij}</math> are given as a function of their absolute index differences: <math>m_{ij} = h(|i-j|),</math>
# Let <math>M > 0</math> and <math>N</math> Hermitian. If <math>MN + NM \ge 0</math> (resp., <math>MN + NM > 0</math>) then <math>N \ge 0</math> (resp., <math>N > 0</math>).<ref> {{Cite book
| title=Positive Definite Matrices
Line 353 ⟶ 380:
| pages=8
}}</ref>
# If <math>M > 0</math> is real, then there is a <math>\delta > 0</math> such that <math>M > \delta I,</math>
# If <math>M_k</math> denotes the leading <math>k \times k</math> minor, <math>\det\left(M_k\right)/\det\left(M_{k-1}\right)</math> is the
# A matrix is negative definite if its
# If <math>M</math> is a real positive definite matrix, then there exists a positive real number <math>m</math> such that for every vector <math>\mathbf{v},</math>
# A Hermitian matrix is positive semidefinite if and only if all of its principal minors are nonnegative. It is however not enough to consider the leading principal minors only, as is checked on the diagonal matrix with entries {{math|0}} and {{math|−1 .}}
=== Block matrices and submatrices ===
A positive <math>2n \times 2n</math> matrix may also be defined by [[block matrix|blocks]]:
<math display="block">
where each block is <math>n \times n,</math>
We have that <math>\mathbf{z}^* M\mathbf{z} \ge 0</math> for all complex <math>\mathbf
<math display="block">\begin{bmatrix} \mathbf{v}^* & 0 \end{bmatrix} \begin{bmatrix} A & B \\ B^* & D \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ 0 \end{bmatrix} = \mathbf{v}^* A\mathbf{v} \ge 0.</math>
A similar argument can be applied to <math>D,</math>
Converse results can be proved with stronger conditions on the blocks, for instance, using the [[Schur complement#Conditions for positive definiteness and semi-definiteness|Schur complement]].
=== Local extrema ===
A general [[quadratic form]] <math>f(\mathbf{x})</math> on <math>n</math> real variables <math>x_1, \ldots, x_n</math> can always be written as <math>\mathbf{x}^\
More generally, a twice-differentiable real function <math>f</math> on <math>n</math> real variables has local minimum at arguments <math>x_1, \ldots, x_n</math> if its [[gradient]] is zero and its [[Hessian matrix|Hessian]] (the matrix of all second derivatives) is positive semi-definite at that point. Similar statements can be made for negative definite and semi-definite matrices.
=== Covariance ===
In [[statistics]], the [[covariance matrix]] of a [[multivariate probability distribution]] is always positive semi-definite; and it is positive definite unless one variable is an exact linear function of the others. Conversely, every positive semi-definite matrix is the covariance matrix of some multivariate distribution.
== Extension for non-Hermitian square matrices ==
The definition of positive definite can be generalized by designating any complex matrix <math>M</math> (e.g. real non-symmetric) as positive definite if <math>\
In summary, the distinguishing feature between the real and complex case is that, a [[Bounded operator|bounded]] positive operator on a complex Hilbert space is necessarily Hermitian, or self adjoint. The general claim can be argued using the [[polarization identity]]. That is no longer true in the real case.
Line 389 ⟶ 416:
== Applications ==
=== Heat conductivity matrix ===
Fourier's law of heat conduction, giving heat flux <math>\mathbf
More generally in thermodynamics, the flow of heat and particles is a fully coupled system as described by the [[Onsager reciprocal relations]], and the coupling matrix is required to be positive semi-definite (possibly non-symmetric) in order that entropy production be nonnegative.
== See also ==
* [[Covariance matrix]]
* [[M-matrix]]
* [[Positive-definite function]]
* [[Positive-definite kernel]]
* [[Schur complement]]
* [[Sylvester's criterion]]
* [[Numerical range]]
* [[Williamson theorem]]
== Notes ==▼
== References ==
{{reflist|25em}}
{{refbegin|25em|small=yes}}
* {{cite book
|last1=Horn |first1=Roger A.
|last2=Johnson |first2=Charles R.
|year=2013
|title=Matrix Analysis |edition=2nd
|publisher=[[Cambridge University Press]]
|isbn=978-0-521-54823-6
}}
* {{cite book
|first=Rajendra |last=Bhatia |author-link=Rajendra Bhatia
|year=2007
|title=Positive Definite Matrices
|series=Princeton Series in Applied Mathematics
|isbn=978-0-691-12918-1
}}
* {{cite journal
|last1=Bernstein |first1=B.
|last2=Toupin |first2=R.A.
|year=1962
|title=Some properties of the Hessian matrix of a strictly convex function
|journal=[[Journal für die reine und angewandte Mathematik]]
|volume=210 |pages=67–72
|doi=10.1515/crll.1962.210.65
}}
{{refend}}
== External links ==
* {{springer |title=Positive-definite form |id=p/p073880 }}
* {{cite web
* [http://mathworld.wolfram.com/PositiveDefiniteMatrix.html Wolfram MathWorld: Positive Definite Matrix]▼
|title = Positive definite matrix
|website = Wolfram MathWorld
|publisher = Wolfram Research
▲
}}
{{Matrix classes}}
{{DEFAULTSORT:Positive-Definite Matrix}}
[[Category:Matrices (mathematics)]]
[[de:Definitheit#Definitheit von Matrizen]]
|