Content deleted Content added
m Dating maintenance tags: {{Dead link}} |
m Open access bot: url-access updated in citation with #oabot. |
||
(One intermediate revision by one other user not shown) | |||
Line 1:
{{Short description|Algorithm for phase retrieval}}
[[File:Gerchberg-Saxton algorithm.jpg|thumb|400px|The Gerchberg-Saxton algorithm. FT is Fourier transform.]]
The '''Gerchberg–Saxton (GS) algorithm''' is an iterative [[phase retrieval]] [[algorithm]] for retrieving the phase of a complex-valued wavefront from two intensity measurements acquired in two different planes.<ref>{{Cite journal|last=Gerchberg|first=R. W.|last2=Saxton|first2=W. O.|date=1972|title=A practical algorithm for the determination of the phase from image and diffraction plane pictures|url=http://www.u.arizona.edu/~ppoon/GerchbergandSaxton1972.pdf|archive-url=https://web.archive.org/web/20160328053000/http://www.u.arizona.edu/~ppoon/GerchbergandSaxton1972.pdf|url-status=dead|archive-date=March 28, 2016|journal=Optik|language=EN|volume=35|pages=237–246
It is often necessary to know only the phase distribution from one of the planes, since the phase distribution on the other plane can be obtained by performing a Fourier transform on the plane whose phase is known. Although often used for two-dimensional signals, the GS algorithm is also valid for one-dimensional signals.
Line 7:
The [[pseudocode]] below performs the GS algorithm to obtain a phase distribution for the plane "Source", such that its Fourier transform would have the amplitude distribution of the plane "Target".
The Gerchberg-Saxton algorithm is one of the most prevalent methods used to create [[computer-generated hologram]]s.<ref>{{Cite journal |last=Memmolo |first=Pasquale |last2=Miccio |first2=Lisa |last3=Merola |first3=Francesco |last4=Paciello |first4=Antonio |last5=Embrione |first5=Valerio |last6=Fusco |first6=Sabato |last7=Ferraro |first7=Pietro |last8=Antonio Netti |first8=Paolo |date=2014-01-01 |title=Investigation on specific solutions of Gerchberg–Saxton algorithm |url=https://www.sciencedirect.com/science/article/pii/S0143816613001942 |journal=Optics and Lasers in Engineering |volume=52 |pages=206–211 |doi=10.1016/j.optlaseng.2013.06.008 |issn=0143-8166|url-access=subscription }}</ref>
==Pseudocode algorithm==
|