Single-atom transistor: Difference between revisions

Content deleted Content added
AGS2012 (talk | contribs)
Single-Atom Transistor
 
Open access status updates in citations with OAbot #oabot
 
(41 intermediate revisions by 30 users not shown)
Line 1:
A '''single-atom transistor''' is a device that can open and close an [[electrical circuit]] by the controlled and reversible repositioning of one single [[atom]]. The single-atom transistor was invented and first demonstrated in 2002 by Dr. Fangqing Xie in Prof. Thomas Schimmel's Group at the [[Karlsruhe Institute of Technology]] (former University of Karlsruhe).<ref>{{cite journal | last1=Xie | first1=F.-Q. | last2=Nittler | first2=L. | last3=Obermair | first3=Ch. | last4=Schimmel | first4=Th. | title=Gate-Controlled Atomic Quantum Switch | journal=Physical Review Letters | publisher=American Physical Society (APS) | volume=93 | issue=12 | date=2004-09-15 | issn=0031-9007 | doi=10.1103/physrevlett.93.128303 | page=128303| pmid=15447312 | bibcode=2004PhRvL..93l8303X }}</ref> By means of a small electrical voltage applied to a control [[electrode]], the so-called ''gate electrode'', a single silver atom is reversibly moved in and out of a tiny junction, in this way closing and opening an electrical contact.
== Single-Atom Transistor ==
 
{{AFC submission|||ts=20120222110431|u=AGS2012|ns=5}}<!--- Important, do not remove this line before article has been created. --->
A single-atom transistor is a device which allows one to open and close an electronic circuit by the controlled
and reproducible repositioning of one single atom. It is invented in Karlsruhe at the Karlsruhe Institute of Technology (KIT).
 
 
Therefore, the single-atom transistor works as an atomic [[switch]] or atomic [[relay]], where the switchable atom opens and closes the gap between two tiny electrodes called ''source'' and ''drain''.<ref>{{cite journal | last1=Xie | first1=Fang-Qing | last2=Obermair | first2=Christian | last3=Schimmel | first3=Thomas | title=Switching an electrical current with atoms: the reproducible operation of a multi-atom relay | journal=Solid State Communications | publisher=Elsevier BV | volume=132 | issue=7 | year=2004 | issn=0038-1098 | doi=10.1016/j.ssc.2004.08.024 | pages=437–442| bibcode=2004SSCom.132..437X }}</ref><ref>{{cite journal | last1=Xie | first1=F.-Q. | last2=Maul | first2=R. | last3=Augenstein | first3=A. | last4=Obermair | first4=Ch. | last5=Starikov | first5=E. B. | last6=Schön | first6=G. | last7=Schimmel | first7=Th. | last8=Wenzel | first8=W. |display-authors=5| title=Independently Switchable Atomic Quantum Transistors by Reversible Contact Reconstruction | journal=Nano Letters | volume=8 | issue=12 | date=2008-12-10 | issn=1530-6984 | doi=10.1021/nl802438c | pages=4493–4497| pmid=19367974 | arxiv=0904.0904 | bibcode=2008NanoL...8.4493X | s2cid=5191373 }}</ref><ref>{{cite journal | last1=Obermair | first1=Ch. | last2=Xie | first2=F.-Q. | last3=Schimmel | first3=Th. | title=The Single-Atom Transistor: perspectives for quantum electronics on the atomic-scale | journal=Europhysics News | publisher=EDP Sciences | volume=41 | issue=4 | year=2010 | issn=0531-7479 | doi=10.1051/epn/2010403 | pages=25–28| bibcode=2010ENews..41d..25O | doi-access=free | url=https://www.europhysicsnews.org/10.1051/epn/2010403/pdf }}</ref> The single-atom transistor opens perspectives for the development of future atomic-scale logics and quantum electronics.
 
At the same time, the device of the Karlsruhe team of researchers marks the lower limit of [[miniaturization]], as feature sizes smaller than one atom cannot be produced [[Nanolithography|lithographically]]. The device represents a quantum transistor, the conductance of the source-drain channel being defined by the rules of [[quantum mechanics]]. It can be operated at room temperature and at ambient conditions, i.e. neither cooling nor vacuum are required.<ref>{{cite journal | last1=Xie | first1=Fangqing | last2=Maul | first2=Robert | last3=Obermair | first3=Christian | last4=Wenzel | first4=Wolfgang | last5=Schön | first5=Gerd | last6=Schimmel | first6=Thomas | title=Multilevel Atomic-Scale Transistors Based on Metallic Quantum Point Contacts | journal=Advanced Materials | publisher=Wiley | volume=22 | issue=18 | date=2010-02-01 | issn=0935-9648 | doi=10.1002/adma.200902953 | pages=2033–2036| pmid=20544888 | bibcode=2010AdM....22.2033X | s2cid=28378720 | url=https://publikationen.bibliothek.kit.edu/1000018062/150079259 }}</ref>
 
Few atom transistors have been developed at [[Waseda University]] and at Italian CNR by Takahiro Shinada and Enrico Prati, who observed the Anderson–Mott transition{{clarification needed|date=July 2023}} in miniature by employing arrays of only two, four and six individually implanted [[Arsenic|As]] or [[Phosphorus|P]] atoms.<ref>{{cite journal | last1=Prati | first1=Enrico | last2=Hori | first2=Masahiro | last3=Guagliardo | first3=Filippo | last4=Ferrari | first4=Giorgio | last5=Shinada | first5=Takahiro | title=Anderson–Mott transition in arrays of a few dopant atoms in a silicon transistor | journal=Nature Nanotechnology | publisher=Springer Science and Business Media LLC | volume=7 | issue=7 | year=2012 | issn=1748-3387 | doi=10.1038/nnano.2012.94 | pages=443–447| pmid=22751223 | bibcode=2012NatNa...7..443P }}</ref>
 
== See also ==
* [[QFET]] (quantum field-effect transistor)
 
== References ==
{{Reflist}}
 
*F.-Q. Xie, L. Nittler, Ch. Obermair, Th. Schimmel, Phys. Rev. Lett.93, 128303 (2004)
== External links ==
*F.-Q. Xie, Ch. Obermair and Th. Schimmel, Solid State Communications 132, 437 (2004)
* Beilstein TV Video of the Schimmel group: [http://www.beilstein.tv/tvpost/the-single-atom-transistor-perspectives-for-quantum-electronics-at-room-temperature/ The single-atom transistor – perspectives for quantum electronics at room temperature] (link offline)
*F.-Q. Xie, R. Maul, A. Augenstein, Ch. Obermair, E.B. Starikov, G. Schön, Th. Schimmel, W. Wenzel, Nano Lett. 8 (12),4493 (2008)
 
*F.-Q. Xie, R. Maul, Ch. Obermair, G. Schön, W. Wenzel, Th. Schimmel, Advanced Materials 22, 2033 (2010)
[[Category:Transistors]]
*Ch. Obermair, F.-Q. Xie, Th. Schimmel, Europhysics News 41/4, 25-28 (2010)
[[Category:Condensed matter physics]]