A '''single-atom transistor''' is a device that can open and close an [[electrical circuit]] by the controlled and reversible repositioning of one single [[atom]]. The Singlesingle-Atomatom Transistortransistor was invented and first demonstrated in 20042002 by ProfDr. ThomasFangqing SchimmelXie andin hisProf. teamThomas ofSchimmel's scientistsGroup at the [[Karlsruhe Institute of Technology]] (former University of Karlsruhe).<ref>{{cite journal | last1=Xie | first1=F.-Q. Xie,| last2=Nittler | first2=L. Nittler,| last3=Obermair | first3=Ch. Obermair,| last4=Schimmel | first4=Th. Schimmel,| Phys.title=Gate-Controlled Rev.Atomic LettQuantum Switch | journal=Physical Review Letters | publisher=American Physical Society (APS) | volume=93 | issue=12 | date=2004-09-15 | issn=0031-9007 | doi=10.1103/physrevlett.93,.128303 | page=128303| (2004)pmid=15447312 | bibcode=2004PhRvL..93l8303X }}</ref> By means of a small electrical voltage applied to a control [[electrode]], the so-called Gate''gate electrode'', a single silver atom is reversibly moved in and out of a tiny junction, in this way closing and opening an electrical contact.
Therefore, the Singlesingle-Atomatom Transistortransistor works as an atomic [[switch]] or atomic [[relay]], where the switchable atom opens and closes the gap between two tiny electrodes called Source''source'' and Drain''drain''.<ref>F.-Q.{{cite journal | last1=Xie, Ch.| first1=Fang-Qing | last2=Obermair and| Th.first2=Christian | last3=Schimmel, | first3=Thomas | title=Switching an electrical current with atoms: the reproducible operation of a multi-atom relay | journal=Solid State Communications | publisher=Elsevier BV | volume=132, 437| (issue=7 | year=2004) | issn=0038-1098 | doi=10.1016/j.ssc.2004.08.024 | pages=437–442| bibcode=2004SSCom.132..437X }}</ref><ref>{{cite journal | last1=Xie | first1=F.-Q. Xie,| last2=Maul | first2=R. Maul,| last3=Augenstein | first3=A. Augenstein,| last4=Obermair | first4=Ch. Obermair,| last5=Starikov | first5=E. B. Starikov,| last6=Schön | first6=G. Schön,| last7=Schimmel | first7=Th. Schimmel,| last8=Wenzel | first8=W. Wenzel,|display-authors=5| title=Independently Switchable Atomic Quantum Transistors by Reversible Contact Reconstruction | journal=Nano Lett.Letters | volume=8 (| issue=12),4493 (| date=2008)-12-10 | issn=1530-6984 | doi=10.1021/nl802438c | pages=4493–4497| pmid=19367974 | arxiv=0904.0904 | bibcode=2008NanoL...8.4493X | s2cid=5191373 }}</ref><ref>{{cite journal | last1=Obermair | first1=Ch. Obermair,| last2=Xie | first2=F.-Q. Xie,| last3=Schimmel | first3=Th. Schimmel,| title=The Single-Atom Transistor: perspectives for quantum electronics on the atomic-scale | journal=Europhysics News | publisher=EDP Sciences | volume=41/ | issue=4, 25-28| (year=2010) | issn=0531-7479 | doi=10.1051/epn/2010403 | pages=25–28| bibcode=2010ENews..41d..25O | doi-access=free | url=https://www.europhysicsnews.org/10.1051/epn/2010403/pdf }}</ref> The Singlesingle-Atomatom Transistortransistor opens perspectives for the development of future atomic-scale logics and quantum electronics.
At the same time, the device of the Karlsruhe team of researchers marks the lower limit of [[miniaturization]], as feature sizes smaller than one atom cannot be produced [[Nanolithography|lithographically]]. The device represents a quantum transistor, the conductance of the Sourcesource-Draindrain channel being defined by the rules of [[quantum mechanics]]. It can be operated at room temperature and at ambient conditions, i.e. neither cooling nor vacuum are required.<ref>F.-Q.{{cite journal | last1=Xie, R.| first1=Fangqing | last2=Maul, Ch.| first2=Robert | last3=Obermair, G.| Schön,first3=Christian W.| last4=Wenzel, Th.| first4=Wolfgang | last5=Schön | first5=Gerd | last6=Schimmel, | first6=Thomas | title=Multilevel Atomic-Scale Transistors Based on Metallic Quantum Point Contacts | journal=Advanced Materials | publisher=Wiley | volume=22, 2033| (issue=18 | date=2010)-02-01 | issn=0935-9648 | doi=10.1002/adma.200902953 | pages=2033–2036| pmid=20544888 | bibcode=2010AdM....22.2033X | s2cid=28378720 | url=https://publikationen.bibliothek.kit.edu/1000018062/150079259 }}</ref>
Few atom transistors have been developed at [[Waseda University]] and at Italian CNR by Takahiro Shinada and Enrico Prati, who observed the Anderson-MottAnderson–Mott transition{{clarification needed|date=July 2023}} in miniature by employing arrays of only two, four and six individually implanted [[Arsenic|As]] or [[Phosphorus|P]] atoms. <ref>E.{{cite journal | last1=Prati, M.| first1=Enrico | last2=Hori, F.| first2=Masahiro | last3=Guagliardo, G.| first3=Filippo | last4=Ferrari, T.| first4=Giorgio | last5=Shinada, Anderson-Mott| first5=Takahiro | title=Anderson–Mott transition in arrays of a few dopant atoms in a silicon transistor, | journal=Nature Nanotechnology | publisher=Springer Science and Business Media LLC | volume=7, pp.| 443issue=7 | year=2012 | issn=1748-3387 447| (doi=10.1038/nnano.2012).94 | pages=443–447| pmid=22751223 | bibcode=2012NatNa...7..443P }}</ref>
== ExternalSee linksalso ==
* [[QFET]] (quantum field-effect transistor)
* Beilstein TV Video of the Schimmel group: [http://www.beilstein.tv/tvpost/the-single-atom-transistor-perspectives-for-quantum-electronics-at-room-temperature/ The single-atom transistor – perspectives for quantum electronics at room temperature] ▼
== References ==
{{Reflist}}
== External links ==
▲* Beilstein TV Video of the Schimmel group: [http://www.beilstein.tv/tvpost/the-single-atom-transistor-perspectives-for-quantum-electronics-at-room-temperature/ The single-atom transistor – perspectives for quantum electronics at room temperature] (link offline)
[[Category:Transistors]]
[[Category:Condensed matter physics]]
|