Content deleted Content added
Submitting using AfC-submit-wizard |
m Open access bot: url-access updated in citation with #oabot. |
||
(12 intermediate revisions by 9 users not shown) | |||
Line 1:
{{Short description|
{{Orphan|date=December 2023}}
{{Probability distribution |
Line 14 ⟶ 11:
support =<math>\mathbf{X}</math> is ''p'' × ''p'' [[positive-definite matrix|positive definite matrix]]|
pdf =<math>
\frac{\Gamma_p\left(\frac{\nu+\delta+p-1}{2}\right)}{\Gamma_p\left(\frac{\nu}{2}\right)\
</math>
*<math>\Gamma_p</math> is the [[multivariate gamma function]]
Line 30 ⟶ 27:
}}
In [[statistics]], the '''matrix F distribution''' (or '''matrix variate F distribution''') is a matrix variate generalization of the [[F-distribution|F distribution]] which is defined on real-valued [[positive-definite matrix|positive-definite]] [[matrix (mathematics)|matrices]]. In [[Bayesian statistics]] it can be used as the semi conjugate prior for the covariance matrix or precision matrix of [[multivariate normal]] distributions, and related distributions
==Density==
Line 38 ⟶ 35:
<math>
f_{\mathbf X}({\mathbf X}; {\mathbf \Psi}, \nu, \delta) =
\frac{\Gamma_p\left(\frac{\nu+\delta+p-1}{2}\right)}{\Gamma_p\left(\frac{\nu}{2}\right)\
</math>
where <math>\mathbf{X}</math> and <math>{\mathbf\Psi}</math> are <math>p\times p</math> [[positive-definite matrix|positive definite]] matrices, <math>| \cdot |</math> is the determinant, Γ<sub>''p''</sub>(&
==Properties==
Line 47 ⟶ 44:
===Construction of the distribution===
* The standard matrix F distribution, with an identity scale matrix <math>\mathbf I_p</math>, was originally derived by
<math>{\mathbf \Phi_1}\sim \mathcal{W}({\mathbf I_p},\nu)</math> and <math>{\mathbf \Phi_2}\sim \mathcal{W}({\mathbf I_p},\delta+k-1)</math>, and define <math>\mathbf X = {\mathbf \Phi_2}^{-1/2}{\mathbf \Phi_1}{\mathbf \Phi_2}^{-1/2}</math>, then <math>\mathbf X\sim \mathcal{F}({\mathbf I_p},\nu,\delta) </math>. * If <math>{\mathbf X}|\mathbf\Phi\sim \mathcal{W}^{-1}({\mathbf\Phi},\delta+p-1)</math> and <math>{\mathbf \Phi}\sim \mathcal{W}({\mathbf\Psi},\nu)</math>, then, after integrating out <math>\mathbf\Phi</math>, <math>\mathbf X</math> has a matrix F-distribution, i.e.,
<math> f_{\mathbf X | \mathbf\Phi, \nu, \delta}(\mathbf X) =
\int f_{\mathbf X | \mathbf\Phi, \delta+p-1}(\mathbf X)
f_{\mathbf\Phi | \mathbf\Psi, \nu}(\mathbf\Phi) d\mathbf\Phi.
</math> <br/>This construction is useful to construct a semi-conjugate prior for a covariance matrix.<ref name="mulderpericchi2018" />
*If <math>{\mathbf X}|\mathbf\Phi\sim \mathcal{W}({\mathbf\Phi},\nu)</math> and <math>{\mathbf \Phi}\sim \mathcal{W}^{-1}({\mathbf\Psi},\delta+p-1)</math>, then, after integrating out <math>\mathbf\Phi</math>, <math>\mathbf X</math> has a matrix F-distribution, i.e.,<br/><math>
Line 59:
\int f_{\mathbf X | \mathbf\Phi, \nu}(\mathbf X)
f_{\mathbf\Phi | \mathbf\Psi, \delta + p - 1}(\mathbf\Phi) d\mathbf\Phi.
</math><br/>This construction is useful to construct a semi-conjugate prior for a precision matrix.<ref name="williamsmulder2020" />
===Marginal distributions from a matrix F distributed matrix===
Line 77:
<math> E(\mathbf X) = \frac{\nu}{\delta-2}\mathbf\Psi.</math>
The (co)variance of elements of <math>\mathbf{X}</math> are given by:<ref name="mulderpericchi2018" />
:<math>
Line 86:
== Related distributions ==
* The matrix F-distribution has also been termed the multivariate beta II distribution.<ref name="tan1969">{{Cite journal |last=Tan
* A [[univariate]] version of the matrix F distribution is the [[F-distribution]]. With <math>p=1</math> (i.e. univariate) and <math>\mathbf\Psi = 1</math>, and <math>x=\mathbf{X}</math>, the [[probability density function]] of the matrix F distribution becomes the univariate (unscaled) [[F-distribution|F distribution]]:<br/><math>
f_{x\mid\nu, \delta}(x) =
Line 93 ⟶ 92:
</math>
* In the [[univariate]] case, with <math>p=1</math> and <math>x=\mathbf{X}</math>, and when setting <math>\nu=1</math>, then <math>\sqrt{x}</math> follows a [[Folded-t and half-t distributions|half t distribution]] with scale parameter <math>\sqrt{\psi}</math> and degrees of freedom <math>\delta</math>. The half t distribution is a common prior for standard deviations<ref name="gelman2006">{{Cite journal |last=Gelman
==See also==
Line 106 ⟶ 105:
{{ProbDistributions|multivariate}}
[[Category:Analysis of variance]]
[[Category:Multivariate continuous distributions]]
|