Lattice Boltzmann methods for solids: Difference between revisions

Content deleted Content added
Tmaquart (talk | contribs)
No edit summary
OAbot (talk | contribs)
m Open access bot: url-access updated in citation with #oabot.
 
(12 intermediate revisions by 9 users not shown)
Line 1:
{{Short description|definitionClass of thecomputational latticefluid Boltzmanndynamics methods for solids}}
{{Orphan|date=December 2024}}
{{Draft topics|stem}}
{{AfC topic|stem}}
{{AfC submission|||ts=20220824221609|u=YetAnotherScientist|ns=118}}
{{AfC submission|t||ts=20220824221323|u=YetAnotherScientist|ns=118|demo=}}<!-- Important, do not remove this line before article has been created. -->
 
The '''Lattice Boltzmann methods for solids (LBMS)''' are specific methods based on the [[lattice Boltzmann methods]] (LBM). LBM are a groupset of numerical methods thatfor are used to solvesolving [[Partialpartial differential equation|partial differential equations]]s (PDE) in solid mechanics. TheseThe methods themselves relying onuse a discretization of the [[Boltzmann equation]] (BEBM)., Whenand thetheir PDEuse atis stakeknown areas related to solid mechanics, this subset of LBM is calledthe lattice Boltzmann methods for solids. The main categories of LBMS are relying on:
 
LBMS methods are categorized by their reliance on:
* Vectorial distributions
 
* Vectorial distributions<ref name="Marconi_2003"/>
* Wave solvers<ref name="geo2011wave"/>
* Force tuning<ref name="mnnclbms"/>
 
The LBMS subset remains highly challenging from a computational aspect as much as from a theoretical point of view. Solving solid equations within the LBM framework is still a very active area of research. If solids are solved, this shows that the [[Boltzmann equation]] is capable toof describedescribing solidssolid motions as well as fluids and gases: thus unlocking complex physics to be solved such as [[Fluid–structure interaction|fluid-structure interaction]] (FSI) in biomechanics.
 
== Proposed insights ==
 
=== Vectorial distributions ===
The first attempt<ref name="Marconi_2003"/> of LBMS tried to use a Boltzmann-like equation for force (vectorial) distributions. The approach requires more computational memory but results are obtained in fracture and solid cracking.
 
=== Wave solvers ===
Another approach consists in using LBM as acoustic solvers to capture waves propagation in solids.<ref name="geo2011wave"/><ref name="xia07"/><ref name="Guangwu_2000a"/><ref name="obr12"/>
 
=== Force tuning ===
 
==== Introduction ====
This idea consists of introducing a modified version of the forcing term:<ref name="guo2002force"/> (or equilibrium distribution<ref name="noel2019"/>) into the LBM as a stress divergence force. This force is considered space-time dependent and contains solid properties<ref group="Note" name="notesolidproperties"/>:
 
::<math>\vec{g} = \frac{1}{\rho} \vec{\mathbf{\nabla}_{x}} \cdot \overline{\overline{\sigma}}</math>,
 
where <math>\overline{\overline{\sigma}}</math> denotes the [[cauchyCauchy stress tensor]]. <math>\vec{g}</math> and <math>\rho</math> are respectively the gravity vector and solid matter density. Stress
The stress tensor is usually computed accrossacross the lattice aiming [[Finite difference method|finite difference schemes]].
 
==== Some results ====
[[File:LBMS solid displacement.png|thumb|2D displacement magnitude on a solid system using force tuning. Obtained field is in accordance with [[Finitefinite element method|finite element methods]]s results.]]
Force tuning<ref name="mnnclbms"/> has recently proven its efficiency with a maximum error of 5% in comparison with standard [[Finite element method|finite element]] solvers in mechanics. Accurate validation of results can be also be a tedious task since these methods are very different, common issues are:
 
* Meshes or lattice discretization
* Location of computed fields at elements or nodes
* Hidden information in softwaressoftware used for [[Finite element method|finite element analysis]] comparison
* Non-linear materials
* Steady state convergence for LBMS
Line 44 ⟶ 46:
 
== References ==
<!-- Inline citations added to your article will automatically display here. See en.wikipedia.org/wiki/WP:REFB for instructions on how to add citations. -->
 
{{reflist|refs=
<ref name="geo2011wave">{{cite journal |last1=Frantziskonis |first1=George N. |date=2011 |title=Lattice Boltzmann method for multimode wave propagation in viscoelastic media and in elastic solids |journal=Physical Review E |volume=83 |issue=6 |pages=066703 |doi=10.1103/PhysRevE.83.066703|pmid=21797512 |bibcode=2011PhRvE..83f6703F }}</ref>
 
<ref name="guo2002force">{{cite journal |last1=Guo |first1=Zhaoli |last2=Zheng |first2=Chuguang |last3=Shi |first3=Baochang |title=Discrete lattice effects on the forcing term in the lattice Boltzmann method |journal=Physical reviewReview E |date=2002 |volume=65 |issue=4 Pt 2B |page=046308|doi=10.1103/PhysRevE.65.046308 |pmid=12006014 |bibcode=2002PhRvE..65d6308G }}</ref>
 
<ref name="mnnclbms">{{cite journal |last1=Maquart |first1=Tristan |last2=Noël |first2=Romain |last3=Courbebaisse |first3=Guy |last4=Navarro |first4=Laurent |title=Toward a Lattice Boltzmann Method for Solids—ApplicationSolids — Application to Static Equilibrium of Isotropic Materials |journal=Applied Sciences |date=2022 |volume=12 |issue=9 |page=4627|doi=10.3390/app12094627 |doi-access=free |hdl=20.500.11850/548477 |hdl-access=free }}</ref>
 
<ref name="Marconi_2003">{{cite journal
|last1= Marconi |first1= Stefan |last2=Chopard |first2=Bastien
|title= A Lattice Boltzmann Model for a Solid Body
|date= 2003
|volume= 17
|pages= 153–156
|issn= 0217-9792
|doi= 10.1142/S0217979203017254
|url= http://www.worldscientific.com/doi/abs/10.1142/S0217979203017254
|journal= International Journal of Modern Physics B
|number= 1n02
|bibcode= 2003IJMPB..17..153M |url-access= subscription}}</ref>
 
<ref name="Guangwu_2000a">{{cite journal
|last1= Guangwu |first1= Yan
|title= A Lattice Boltzmann Equation for Waves
|date= 2000
|volume= 161
|pages= 61–69
|issn= 0021-9991
|doi= 10.1006/jcph.2000.6486
|url= http://www.sciencedirect.com/science/article/pii/S0021999100964866
|journal= Journal of Computational Physics
|number= 1
|bibcode= 2000JCoPh.161...61G
|url-access= subscription
}}</ref>
 
<ref name="xia07">{{cite journal
|last1= Xiao |first1= Shaoping
|title= A lattice Boltzmann method for shock wave propagation in solids
|journal= Communications in Numerical Methods in Engineering
|volume= 23
|number= 1
|pages= 71–84
|date= 2007
|publisher= Wiley Online Library
|doi= 10.1002/cnm.883
}}</ref>
 
<ref name="obr12">{{cite journal
|last1= O’Brien |first1= Gareth S |last2= Nissen-Meyer |first2= Tarje |last3= Bean |first3= CJ
|title= A lattice Boltzmann method for elastic wave propagation in a poisson solid
|journal= Bulletin of the Seismological Society of America
|volume= 102
|number= 3
|pages= 1224–1234
|date= 2012
|publisher=Seismological Society of America
|doi= 10.1785/0120110191 |bibcode= 2012BuSSA.102.1224O }}</ref>
 
<ref name="noel2019">{{cite thesis
|last= Noël |first= Romain
|date= 2019
|title= The lattice Boltzmann method for numerical simulation of continuum medium aiming image-based diagnostics
|type= PhD
|chapter= 4 |publisher= Université de Lyon
|chapter-url= https://tel.archives-ouvertes.fr/tel-02955821
}}</ref>
 
<ref name="mnnclbms">{{cite journal |last1=Maquart |first1=Tristan |last2=Noël |first2=Romain |last3=Courbebaisse |first3=Guy |last4=Navarro |first4=Laurent |title=Toward a Lattice Boltzmann Method for Solids—Application to Static Equilibrium of Isotropic Materials |journal=Applied Sciences |date=2022 |volume=12 |page=4627}}</ref>
}}
 
[[Category:Biomechanics]]
[[Category:Fluid dynamics]]
[[Category:Thermodynamics]]