Content deleted Content added
Cleaning up accepted Articles for creation submission (AFCH 0.9.1) |
m Open access bot: url-access updated in citation with #oabot. |
||
(5 intermediate revisions by 5 users not shown) | |||
Line 1:
{{Short description|
{{Orphan|date=December 2024}}
The '''Lattice Boltzmann methods for solids (LBMS)'''
LBMS methods are categorized by their reliance on:
* Vectorial distributions<ref name="Marconi_2003"/>
Line 28 ⟶ 31:
==== Some results ====
[[File:LBMS solid displacement.png|thumb|2D displacement magnitude on a solid system using force tuning. Obtained field is in accordance with [[
Force tuning<ref name="mnnclbms"/> has recently proven its efficiency with a maximum error of 5% in comparison with standard [[Finite element method|finite element]] solvers in mechanics. Accurate validation of results can also be a tedious task since these methods are very different, common issues are:
* Meshes or lattice discretization
* Location of computed fields at elements or nodes
* Hidden information in
* Non-linear materials
* Steady state convergence for LBMS
Line 45 ⟶ 48:
{{reflist|refs=
<ref name="geo2011wave">{{cite journal |last1=Frantziskonis |first1=George N. |date=2011 |title=Lattice Boltzmann method for multimode wave propagation in viscoelastic media and in elastic solids |journal=Physical Review E |volume=83 |issue=6 |pages=066703 |doi=10.1103/PhysRevE.83.066703|pmid=21797512 |bibcode=2011PhRvE..83f6703F }}</ref>
<ref name="guo2002force">{{cite journal |last1=Guo |first1=Zhaoli |last2=Zheng |first2=Chuguang |last3=Shi |first3=Baochang |title=Discrete lattice effects on the forcing term in the lattice Boltzmann method |journal=Physical Review E |date=2002 |volume=65 |issue=4 Pt 2B |page=046308|doi=10.1103/PhysRevE.65.046308 |pmid=12006014 |bibcode=2002PhRvE..65d6308G }}</ref>
<ref name="mnnclbms">{{cite journal |last1=Maquart |first1=Tristan |last2=Noël |first2=Romain |last3=Courbebaisse |first3=Guy |last4=Navarro |first4=Laurent |title=Toward a Lattice Boltzmann Method for Solids — Application to Static Equilibrium of Isotropic Materials |journal=Applied Sciences |date=2022 |volume=12 |issue=9 |page=4627|doi=10.3390/app12094627 |doi-access=free |hdl=20.500.11850/548477 |hdl-access=free }}</ref>
<ref name="Marconi_2003">{{cite journal
Line 62 ⟶ 65:
|journal= International Journal of Modern Physics B
|number= 1n02
|bibcode= 2003IJMPB..17..153M |url-access= subscription}}</ref>
}}</ref>▼
<ref name="Guangwu_2000a">{{cite journal
Line 75 ⟶ 78:
|journal= Journal of Computational Physics
|number= 1
|bibcode= 2000JCoPh.161...61G
|url-access= subscription
▲ }}</ref>
<ref name="xia07">{{cite journal
Line 98 ⟶ 103:
|date= 2012
|publisher=Seismological Society of America
|doi= 10.1785/0120110191 |bibcode= 2012BuSSA.102.1224O }}</ref>
<ref name="noel2019">{{cite thesis
|