Content deleted Content added
→General form: Fix a typo |
m Open access bot: url-access updated in citation with #oabot. |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 4:
== Relation to constraint-satisfaction problems ==
The constrained-optimization problem (COP) is a significant generalization of the classic [[constraint-satisfaction problem]] (CSP) model.<ref>{{Citation|last1=Rossi|first1=Francesca|title=Chapter 1 – Introduction|date=2006-01-01|url=http://www.sciencedirect.com/science/article/pii/S1574652606800052|work=Foundations of Artificial Intelligence|volume=2|pages=3–12|editor-last=Rossi|editor-first=Francesca|series=Handbook of Constraint Programming|publisher=Elsevier|doi=10.1016/s1574-6526(06)80005-2|access-date=2019-10-04|last2=van Beek|first2=Peter|last3=Walsh|first3=Toby|editor2-last=van Beek|editor2-first=Peter|editor3-last=Walsh|editor3-first=Toby|url-access=subscription}}</ref> COP is a CSP that includes an ''objective function'' to be optimized. Many algorithms are used to handle the optimization part.
==General form==
Line 34:
====Lagrange multiplier====
{{main|Lagrange multipliers}}
If the constrained problem has only equality constraints, the method of [[Lagrange multipliers]] can be used to convert it into an unconstrained problem whose number of variables is the original number of variables
===Inequality constraints===
Line 94:
* [[Constraint programming]]
* [[Integer programming]]
* [[Metric projection]]
* [[Penalty method]]
* [[Superiorization]]
Line 114 ⟶ 115:
| url-access=registration
}}
{{Optimization algorithms}}
[[Category:Mathematical optimization]]
|