Logarithm of a matrix: Difference between revisions

Content deleted Content added
OAbot (talk | contribs)
m Open access bot: url-access updated in citation with #oabot.
 
(4 intermediate revisions by 4 users not shown)
Line 12:
== Power series expression ==
If ''B'' is sufficiently close to the identity matrix, then a logarithm of ''B'' may be computed by means of the [[power series]]
: <math>\log(B) = \log(I- + (I-B - I)) = -\sum_{k=1}^{\infty} \frac{(I-B1)^{k + 1}}{k} (B - I)^k = (B - I) - \frac{(B - I)^2}{2} + \frac{(B - I)^3}{3} - \cdots</math>,
which can be rewritten as
</math>.
:<math>\log(B) = -\sum_{k=1}^{\infty} \frac{(I - B)^k}{k} = -(I - B) - \frac{(I - B)^2}{2} - \frac{(I - B)^3}{3} - \cdots</math>.
Specifically, if <math>\left\|I-B\right\|<1</math>, then the preceding series converges and <math>e^{\log(B)}=B</math>.<ref>{{harvnb|Hall|2015}} Theorem 2.8</ref>
 
Line 77 ⟶ 78:
<math>
\sum_{k=0}^\infty{1 \over k!}B_n^k =\begin{pmatrix}
\sum_{k=0}^\infty{(-1)^k \over 2k!}(\alpha+2\pi n)^{2k} & -\sum_{k=0}^\infty{(-1)^k \over (2k+1)!}(\alpha+2\pi n)^{2k+1} \\
\sum_{k=0}^\infty{(-1)^k \over (2k+1)!}(\alpha+2\pi n)^{2k+1} & \sum_{k=0}^\infty{(-1)^k \over 2k!}(\alpha+2\pi n)^{2k} \\
\end{pmatrix} =\begin{pmatrix}
\cos(\alpha) & -\sin(\alpha) \\
\sin(\alpha) & \cos(\alpha) \\
Line 109 ⟶ 113:
Suppose that ''A'' and ''B'' commute, meaning that ''AB'' = ''BA''. Then
: <math>\log{(AB)} = \log{(A)}+\log{(B)}</math>
if and only if <math>\operatorname{arg}(\mu_j) + \operatorname{arg}(\nu_j) \in (- \pi, \pi]</math>, where <math>\mu_j</math> is an [[eigenvalue]] of <math>A</math> and <math>\nu_j</math> is the corresponding [[eigenvalue]] of <math>B</math>.<ref>{{cite journal |last1=APRAHAMIAN |first1=MARY |last2=HIGHAM |first2=NICHOLAS J. |title=The Matrix Unwinding Function, with an Application to Computing the Matrix Exponential |journal=SIAM Journal on Matrix Analysis and Applications |year=2014 |volume=35 |issue=1 |page=97 |doi=10.1137/130920137 |url=https://epubs.siam.org/doi/pdf/10.1137/130920137 |access-date=13 December 2022|doi-access=free }}</ref> In particular, <math>\log(AB) = \log(A) + \log(B)</math> when ''A'' and ''B'' commute and are both [[Definite matrix|positive-definite]]. Setting ''B'' = ''A<sup>−1</sup>'' in this equation yields
: <math> \log{(A^{-1})} = -\log{(A)}.</math>
 
Line 209 ⟶ 213:
 
== Constraints in the 2 × 2 case ==
If a 2 × 2 real matrix has a negative [[determinant]], it has no real logarithm. Note first that any 2 × 2 real matrix can be considered one of the three types of the complex number ''z'' = ''x'' + ''y'' ''ε'', where ''''ε<sup>2</sup> ∈ {{mset| −1, 0, +1 }}. This ''z'' is a point on a complex subplane of the [[ring (mathematics)|ring]] of matrices.<ref>{{Wikibooks-inline|Abstract Algebra/2x2 real matrices}}</ref>
 
The case where the determinant is negative only arises in a plane with ε<sup>2</sup> =+1, that is a [[split-complex number]] plane. Only one quarter of this plane is the image of the exponential map, so the logarithm is only defined on that quarter (quadrant). The other three quadrants are images of this one under the [[Klein four-group]] generated by ε and −1.
Line 273 ⟶ 277:
| issue=3
| s2cid=126053191
| url-access=subscription
}}