Content deleted Content added
fixed link |
m Open access bot: url-access updated in citation with #oabot. |
||
(43 intermediate revisions by 34 users not shown) | |||
Line 1:
{{Short description|Mathematical operator in quantum optics}}
In the [[quantum mechanics]] study of [[optical phase space]], the '''displacement operator''' for one mode is the [[shift operator]] in [[quantum optics]],
{{Quantum optics operators}}▼
:<math>\hat{D}(\alpha)=\exp \left ( \alpha \hat{a}^\dagger - \alpha^\ast \hat{a} \right ) </math>,
where <math>\alpha</math> is the amount of displacement in [[optical phase space]], <math>\alpha^
▲:<math>\hat{D}(\alpha)=\exp \left ( \alpha \hat{a}^\dagger - \alpha^\ast \hat{a} \right ) </math>,
▲where <math>\alpha</math> is the amount of displacement in [[optical phase space]], <math>\alpha^\ast</math> is the complex conjugate of that displacement, and <math>\hat{a} </math> and <math>\hat{a}^\dagger</math> are the [[creation and annihilation operators|lowering and raising operators]], respectively.
The name of this operator is derived from its ability to displace a localized state in phase space by a magnitude <math>\alpha</math>. It may also act on the vacuum state by displacing it into a [[coherent state]]. Specifically,
<math>\hat{D}(\alpha)|0\rangle=|\alpha\rangle</math> where <math>|\alpha\rangle</math> is a [[coherent state]], which is an [[eigenstate]] of the annihilation (lowering) operator. This operator was introduced independently by [[Richard Feynman]] and [[Roy J. Glauber]] in 1951.<ref>{{Cite journal |last=Dodonov |first=V. V. |date=2002 |title='Nonclassical' states in quantum optics: a 'squeezed' review of the first 75 years |url=https://iopscience.iop.org/article/10.1088/1464-4266/4/1/201 |journal=Journal of Optics B: Quantum and Semiclassical Optics |volume=4 |issue=1}}</ref><ref>{{Cite journal |last=Feynman |first=Richard P. |date=1951-10-01 |title=An Operator Calculus Having Applications in Quantum Electrodynamics |url=https://journals.aps.org/pr/abstract/10.1103/PhysRev.84.108 |journal=Physical Review |volume=84 |issue=1 |pages=108–128 |doi=10.1103/PhysRev.84.108|url-access=subscription }}</ref><ref>{{Cite journal |last=Glauber |first=Roy J. |date=1951-11-01 |title=Some Notes on Multiple-Boson Processes |url=https://journals.aps.org/pr/abstract/10.1103/PhysRev.84.395 |journal=Physical Review |volume=84 |issue=3 |pages=395–400 |doi=10.1103/PhysRev.84.395|url-access=subscription }}</ref>
== Properties ==
The displacement operator is a [[unitary operator]], and therefore obeys
<math>\hat{D}(\alpha)\hat{D}^\dagger(\alpha)=\hat{D}^\dagger(\alpha)\hat{D}(\alpha)=
where
:<math>\hat{D}^\dagger(\alpha) \hat{a} \hat{D}(\alpha)=\hat{a}+\alpha</math
:<math>\hat{D}(\alpha) \hat{a} \hat{D}^\dagger(\alpha)=\hat{a}-\alpha</math>
The product of two displacement operators is another displacement operator whose total displacement,
:<math> e^{\alpha \hat{
which shows us that:
When acting on an eigenket, the phase factor <math>e^{\mathrm i\cdot\operatorname{Im} \left(\alpha \beta^\ast \right)}</math> appears in each term of the resulting state, which makes it physically irrelevant.<ref>Gerry, Christopher, and Peter Knight: ''Introductory Quantum Optics''. Cambridge (England): Cambridge UP, 2005.</ref>▼
:<math>\hat{D}(\alpha)\hat{D}(\beta)= e^{(\alpha\beta^*-\alpha^*\beta)/2} \hat{D}(\alpha + \beta)</math>
▲When acting on an eigenket, the phase factor <math>e^{
It further leads to the braiding relation
:<math>\hat{D}(\alpha)\hat{D}(\beta)=e^{\alpha\beta^*-\alpha^*\beta} \hat{D}(\beta)\hat{D}(\alpha)</math>
== Alternative expressions ==
The Kermack–McCrea identity (named after [[William Ogilvy Kermack]] and [[William McCrea (astronomer)|William McCrea]]) gives two alternative ways to express the displacement operator:
:<math>\hat{D}(\alpha) = e^{ -\frac{1}{2} | \alpha |^2 } e^{+\alpha \hat{a}^{\dagger}} e^{-\alpha^{*} \hat{a} } </math>
:<math>\hat{D}(\alpha) = e^{ +\frac{1}{2} | \alpha |^2 } e^{-\alpha^{*} \hat{a} }e^{+\alpha \hat{a}^{\dagger}} </math>
== Multimode displacement ==
The displacement operator can also be generalized to multimode displacement. A multimode creation operator can be defined as
:<math>\hat A_{\psi}^{\dagger}=\int d\mathbf{k}\psi(\mathbf{k})\hat a^{\dagger}(\mathbf{k})</math>,
==References==▼
<references />▼
where <math>\mathbf{k}</math> is the wave vector and its magnitude is related to the frequency <math>\omega_{\mathbf{k}}</math> according to <math>|\mathbf{k}|=\omega_{\mathbf{k}}/c</math>. Using this definition, we can write the multimode displacement operator as
==See also==▼
:<math>\hat{D}_{\psi}(\alpha)=\exp \left ( \alpha \hat A_{\psi}^{\dagger} - \alpha^\ast \hat A_{\psi} \right ) </math>,
* [[Optical Phase Space]]▼
and define the multimode coherent state as
[[Category:Quantum optics]]▼
:<math>|\alpha_{\psi}\rangle\equiv\hat{D}_{\psi}(\alpha)|0\rangle</math>.
▲==See also==
▲==References==
▲<references />
▲[[Category:Quantum optics]]
|