Content deleted Content added
→Notes: Remove empty section. |
m Open access bot: url-access updated in citation with #oabot. |
||
(16 intermediate revisions by 11 users not shown) | |||
Line 1:
{{Short description|Mathematical operator in quantum optics}}
In the [[quantum mechanics]] study of [[optical phase space]], the '''displacement operator''' for one mode is the [[shift operator]] in [[quantum optics]],
:<math>\hat{D}(\alpha)=\exp \left ( \alpha \hat{a}^\dagger - \alpha^\ast \hat{a} \right ) </math>,
where <math>\alpha</math> is the amount of displacement in [[optical phase space]], <math>\alpha^*</math> is the complex conjugate of that displacement, and <math>\hat{a}</math> and <math>\hat{a}^\dagger</math> are the [[creation and annihilation operators|lowering and raising operators]], respectively.▼
▲where <math>\alpha</math> is the amount of displacement in [[optical phase space]], <math>\alpha^*</math> is the complex conjugate of that displacement, and <math>\hat{a}</math> and <math>\hat{a}^\dagger</math> are the [[creation and annihilation operators|lowering and raising operators]], respectively.
The name of this operator is derived from its ability to displace a localized state in phase space by a magnitude <math>\alpha</math>. It may also act on the vacuum state by displacing it into a [[coherent state]]. Specifically,
<math>\hat{D}(\alpha)|0\rangle=|\alpha\rangle</math> where <math>|\alpha\rangle</math> is a [[coherent state]], which is an [[eigenstate]] of the annihilation (lowering) operator. This operator was introduced independently by [[Richard Feynman]] and [[Roy J. Glauber]] in 1951.<ref>{{Cite journal |last=Dodonov |first=V. V. |date=2002 |title='Nonclassical' states in quantum optics: a 'squeezed' review of the first 75 years |url=https://iopscience.iop.org/article/10.1088/1464-4266/4/1/201 |journal=Journal of Optics B: Quantum and Semiclassical Optics |volume=4 |issue=1}}</ref><ref>{{Cite journal |last=Feynman |first=Richard P. |date=1951-10-01 |title=An Operator Calculus Having Applications in Quantum Electrodynamics |url=https://journals.aps.org/pr/abstract/10.1103/PhysRev.84.108 |journal=Physical Review |volume=84 |issue=1 |pages=108–128 |doi=10.1103/PhysRev.84.108|url-access=subscription }}</ref><ref>{{Cite journal |last=Glauber |first=Roy J. |date=1951-11-01 |title=Some Notes on Multiple-Boson Processes |url=https://journals.aps.org/pr/abstract/10.1103/PhysRev.84.395 |journal=Physical Review |volume=84 |issue=3 |pages=395–400 |doi=10.1103/PhysRev.84.395|url-access=subscription }}</ref>
== Properties ==
Line 16 ⟶ 15:
:<math>\hat{D}(\alpha) \hat{a} \hat{D}^\dagger(\alpha)=\hat{a}-\alpha</math>
The product of two displacement operators is another displacement operator whose total displacement,
:<math> e^{\alpha \hat{a}^{\dagger} - \alpha^*\hat{a}} e^{\beta\hat{a}^{\dagger} - \beta^*\hat{a}} = e^{(\alpha + \beta)\hat{a}^{\dagger} - (\beta^*+\alpha^*)\hat{a}} e^{(\alpha\beta^*-\alpha^*\beta)/2}. </math>
Line 25 ⟶ 24:
When acting on an eigenket, the phase factor <math>e^{(\alpha\beta^*-\alpha^*\beta)/2}</math> appears in each term of the resulting state, which makes it physically irrelevant.<ref>Christopher Gerry and Peter Knight: ''Introductory Quantum Optics''. Cambridge (England): Cambridge UP, 2005.</ref>
It further leads to the braiding relation
:<math>\hat{D}(\alpha)\hat{D}(\beta)=e^{\alpha\beta^*-\alpha^*\beta} \hat{D}(\beta)\hat{D}(\alpha)</math>
== Alternative expressions ==
:<math>\hat{D}(\alpha) = e^{ -\frac{1}{2} | \alpha |^2 } e^{+\alpha \hat{a}^{\dagger}} e^{-\alpha^{*} \hat{a} } </math>
Line 45 ⟶ 47:
:<math>|\alpha_{\psi}\rangle\equiv\hat{D}_{\psi}(\alpha)|0\rangle</math>.
==See also==▼
==References==
<references />
▲==See also==
▲* [[Optical Phase Space]]
{{Physics operators}}
|