Content deleted Content added
added Category:Extremal graph theory using HotCat |
m Open access bot: url-access updated in citation with #oabot. |
||
(8 intermediate revisions by 6 users not shown) | |||
Line 6:
== Definition ==
<math>t(F, W) + t(F, 1 - W) \ge 2^{-e(F)+1}</math>
Line 12:
holds for any [[graphon]] <math>W</math>, where <math>e(F)</math> is the number of edges of <math>F</math> and <math>t(F, W)</math> is the [[homomorphism density]].<ref>{{Cite book|title=Large Networks and Graph Limits|url=https://bookstore.ams.org/coll-60/|access-date=2022-01-13|publisher=American Mathematical Society|page=297}}</ref>
== Interpretations of definition ==
For a graph <math>G</math>, we have <math>t(F, G) = t(F, W_{G}) </math> and <math>t(F, \overline{G})=t(F, 1 - W_G)</math> for the [[Graphon#Analytic Formulation|associated graphon]] <math>W_G</math>, since graphon associated to the complement <math>\overline{G}</math> is <math>W_{\overline{G}}=1 - W_G</math>. Hence, this formula provides us with the very informal intuition to take a close enough approximation, whatever that means,<ref>{{Cite journal|last1=Borgs|first1=C.|last2=Chayes|first2=J. T.|last3=Lovász|first3=L.|authorlink3=László Lovász|last4=Sós|first4=V. T.|authorlink4=Vera T. Sós|last5=Vesztergombi|first5=K.|authorlink5=Katalin Vesztergombi|date=2008-12-20|title=Convergent sequences of dense graphs I: Subgraph frequencies, metric properties and testing
In other words, if we think of edges and non-edges as [[Edge coloring|2-coloring of edges]] of complete graph on the same vertices, then at least <math>2^{-e(F)+1}</math> fraction of all possible copies of <math>F</math> are monochromatic. Note that in a [[Erdős–Rényi model|Erdős–Rényi random graph]] <math>G = G(n, p)</math> with each edge drawn with probability <math>p=1/2 </math>, each [[graph homomorphism]] from <math>F</math> to <math>G</math> have probability <math>2 \cdot 2^{-e(F)} = 2^ {-e(F) +1}</math>of being monochromatic. So, common graph <math>F</math> is a graph where it attains its minimum number of appearance as a monochromatic subgraph of graph <math>G</math> at the graph <math>G=G(n, p)</math> with <math>p=1/2</math>
Line 23:
== Examples ==
* As stated above, all Sidorenko graphs are common graphs.<ref>{{Cite book|title=Large Networks and Graph Limits|url=https://bookstore.ams.org/coll-60/|access-date=2022-01-13|publisher=American Mathematical Society|page=297}}</ref> Hence, any [[Sidorenko's conjecture#Partial results|known Sidorenko graph]] is an example of a common graph, and, most notably, [[Cycle (graph theory)|cycles of even length]] are common.<ref>{{Cite journal|last=Sidorenko|first=A. F.|date=1992|title=Inequalities for functionals generated by bipartite graphs|url=https://www.degruyter.com/document/doi/10.1515/dma.1992.2.5.489/html|journal=Discrete Mathematics and Applications|volume=2|issue=5|doi=10.1515/dma.1992.2.5.489|s2cid=117471984|issn=0924-9265|url-access=subscription}}</ref>
* The [[triangle graph]] <math>K_{3}</math> is one simple example of non-bipartite common graph.<ref>{{Cite book|title=Large Networks and Graph Limits|url=https://bookstore.ams.org/coll-60/|access-date=2022-01-13|publisher=American Mathematical Society|page=299}}</ref>
* <math>K_4 ^{-}</math>, the graph obtained by removing an edge of the [[complete graph]] on 4 vertices <math>K_4</math>, is common.<ref>{{Cite book|title=Large Networks and Graph Limits|url=https://bookstore.ams.org/coll-60/|access-date=2022-01-13|publisher=American Mathematical Society|page=298}}</ref>
* Non-example: It was believed for a time that all graphs are common. However, it turns out that <math>K_{t}</math> is not common for <math>t \ge 4</math>.<ref>{{Cite journal|last=Thomason|first=Andrew|date=1989|title=A Disproof of a Conjecture of Erdős in Ramsey Theory|url=https://onlinelibrary.wiley.com/doi/abs/10.1112/jlms/s2-39.2.246|journal=Journal of the London Mathematical Society|language=en|volume=s2-39|issue=2|pages=246–255|doi=10.1112/jlms/s2-39.2.246|issn=1469-7750|url-access=subscription}}</ref> In particular, <math>K_4</math> is not common even though <math>K_{4} ^{-}</math> is common.
== Proofs ==
===Sidorenko graphs are common===
In <math>t(F, W) + t(F, 1 - W) \ge t(K_2, W)^{e(F)} + t(K_2, 1 - W)^{e(F)}
\ge 2 \bigg( \frac{t(K_2, W) + t(K_2, 1 - W)}{2} \bigg)^{e(F)} = 2^{-e(F) + 1}</math>
Thus, the conditions for common graph is met.<ref>{{Cite book|last=Lovász|first=László|title=Large Networks and Graph Limits|publisher=American Mathematical Society Colloquium publications|year=2012|isbn=978-0821890851|___location=United States|pages=297–298|language=English}}</ref>
===The triangle graph is common===
<math>\int_{[0, 1]^3} (1 - W(x, y))(1 - W(y, z))(1 - W(z, x)) dx dy dz
= 1 - 3 \int_{[0, 1]^2} W(x, y) + 3 \int_{[0, 1]^3} W(x, y) W(x, z) dx dy dz - \int_{[0, 1]^3} W(x, y) W(y, z) W(z, x) dx dy dz</math>
: <math>\int_{[0, 1]^2} W(x, y) dx dy = t(K_2, W) </math>
Line 51 ⟶ 52:
: <math>\int_{[0, 1]^3} W(x, y) W(y, z) W(z, x) dx dy dz = t(K_3, W)</math>
: <math>t(K_3, W) + t(K_3, 1 - W) = 1 - 3 t(K_2, W) + 3 t(K_{1, 2}, W) </math>.
<math display="block">\begin{alignat}{4} t(K_{1, 2}, W) &= \int_{[0, 1]^3} W(x, y) W(x, z) dx dy dz && \\
&= \int_{x \in [0, 1]} \bigg( \int_{y \in [0, 1]} W(x, y) \bigg) \bigg( \int_{z \in [0, 1]} W(x, z) \bigg) && \\
&= \int_{x \in [0, 1]} \bigg( \int_{y \in [0, 1]} W(x, y) \bigg)^2 && \\
&\ge \bigg( \int_{x \in [0, 1]} \int_{y \in [0, 1]} W(x, y) \bigg)^2 = t(K_2, W)^2
\end{alignat}</math>
where the last step follows from the integral [[Cauchy–Schwarz inequality]]. Finally:
<math>t(K_3, W) + t(K_3, 1 - W) \ge 1 - 3 t(K_2, W) + 3 t(K_{2}, W)^2
= 1/4 + 3 \big( t(K_2, W) - 1/2 \big)^2 \ge 1/4</math>.
This
== See also ==
|