Content deleted Content added
Sohaibafzal (talk | contribs) →Layers of PNN: Shifted summary para to top of section |
m Open access bot: url-access updated in citation with #oabot. |
||
(64 intermediate revisions by 37 users not shown) | |||
Line 1:
A '''probabilistic neural network''' ('''PNN
* Input layer
*
*
* Output layer
==Layers
PNN is often used in classification problems.<ref>{{cite web |url=http://www.mathworks.in/help/toolbox/nnet/ug/bss38ji-1.html |title=Probabilistic Neural Networks :: Radial Basis Networks (Neural Network Toolbox™) |website=www.mathworks.in |access-date=6 June 2022 |archive-url=https://archive.today/20120804150441/http://www.mathworks.in/help/toolbox/nnet/ug/bss38ji-1.html |archive-date=4 August 2012 |url-status=dead}}</ref> When an
=== Input layer ===
Each neuron in the input layer represents a predictor variable. In categorical variables, ''N-1'' neurons are used when there are ''N'' number of categories. It standardizes the range of the values by subtracting the median and dividing by the [[interquartile range]]. Then the input neurons feed the values to each of the neurons in the hidden layer.
===Pattern layer===
This layer contains one neuron for each case in the training data set. It stores the values of the predictor variables for the case along with the target value.
===Summation layer===
For PNN
===Output layer===
Line 22:
== Advantages==
There are several advantages and disadvantages using PNN instead of [[multilayer perceptron]].<ref>{{cite web |url=http://www.dtreg.com/pnn.htm |title=Probabilistic and General Regression Neural Networks |access-date=2012-03-22 |url-status=dead |archive-url=https://web.archive.org/web/20120302075157/http://www.dtreg.com/pnn.htm |archive-date=2012-03-02 }}</ref>
* PNNs are much faster than multilayer perceptron networks.
* PNNs can be more accurate than multilayer perceptron networks.
Line 34:
==Applications based on PNN==
* probabilistic neural networks in modelling structural deterioration of stormwater pipes.<ref>{{cite journal |last1=Tran |first1=D. H. |last2=Ng |first2=A. W. M. |last3=Perera |first3=B. J. C. |last4=Burn |first4=S. |last5=Davis |first5=P. |title=Application of probabilistic neural networks in modelling structural deterioration of stormwater pipes |journal=Urban Water Journal |date=September 2006 |volume=3 |issue=3 |pages=175–184 |doi=10.1080/15730620600961684 |bibcode=2006UrbWJ...3..175T |s2cid=15220500 |url=http://vuir.vu.edu.au/583/1/UrbanWater-Dung.pdf|archive-url=https://web.archive.org/web/20170808222146/http://vuir.vu.edu.au/583/1/UrbanWater-Dung.pdf|archive-date=8 August 2017 |access-date=27 February 2023}}</ref>
* probabilistic neural networks method to gastric endoscope samples diagnosis based on FTIR spectroscopy.<ref>
* Application of probabilistic neural networks to population pharmacokineties.<ref>{{Cite book | doi=10.1109/IJCNN.2003.1223983| isbn=0-7803-7898-9| chapter=Application of probabilistic neural networks to population pharmacokineties| title=Proceedings of the International Joint Conference on Neural Networks, 2003| year=2003| last1=Berno| first1=E.| last2=Brambilla| first2=L.| last3=Canaparo| first3=R.| last4=Casale| first4=F.| last5=Costa| first5=M.| last6=Della Pepa| first6=C.| last7=Eandi| first7=M.| last8=Pasero| first8=E.| pages=2637–2642| s2cid=60477107}}</ref>
* Probabilistic Neural Networks to the Class Prediction of Leukemia and Embryonal Tumor of Central Nervous System.<ref>{{Cite journal|url=http://dl.acm.org/citation.cfm?id=1011984|doi = 10.1023/B:NEPL.0000035613.51734.48|title = Application of Probabilistic Neural Networks to the Class Prediction of Leukemia and Embryonal Tumor of Central Nervous System|year = 2004|last1 = Huang|first1 = Chenn-Jung|last2 = Liao|first2 = Wei-Chen|journal = Neural Processing Letters|volume = 19|issue = 3|pages = 211–226|s2cid = 5651402|url-access = subscription}}</ref>
* Ship Identification Using Probabilistic Neural Networks.<ref>{{cite journal |last1=Araghi |first1=Leila Fallah |last2=d Khaloozade |first2=Hami |last3=Arvan |first3=Mohammad Reza |title=Ship Identification Using Probabilistic Neural Networks (PNN) |journal=Proceedings of the International MultiConference of Engineers and Computer Scientists |date=19 March 2009 |volume=2 |url=https://www.iaeng.org/publication/IMECS2009/IMECS2009_pp1291-1294.pdf |access-date=27 February 2023 |___location=[[Hong Kong]], China |language=en}}</ref>
* Probabilistic Neural Network-Based sensor configuration management in a wireless
▲* Probabilistic Neural Network-Based sensor configuration management in a wireless AD-HOC network.<ref>http://www.ll.mit.edu/asap/asap_04/DAY2/27_PA_STEVENS.PDF</ref>
* Probabilistic Neural Network in character recognizing.
* Remote-sensing Image Classification.<ref>{{cite journal|last1=Zhang|first1=Y.|title=Remote-sensing Image Classification Based on an Improved Probabilistic Neural Network|journal=Sensors|date=2009|volume=9|issue=9|pages=7516–7539|doi=10.3390/s90907516|pmid=22400006|pmc=3290485|bibcode=2009Senso...9.7516Z|doi-access=free}}</ref>
== References ==
{{Reflist}}
[[Category:Neural
|