Content deleted Content added
m →Input layer: add link |
m Open access bot: url-access updated in citation with #oabot. |
||
(56 intermediate revisions by 31 users not shown) | |||
Line 1:
A '''probabilistic neural network''' ('''PNN
* Input layer
*
*
* Output layer
==
PNN is often used in classification problems.<ref>{{cite web |url=http://www.mathworks.in/help/toolbox/nnet/ug/bss38ji-1.html |title=Probabilistic Neural Networks :: Radial Basis Networks (Neural Network Toolbox™) |website=www.mathworks.in |access-date=6 June 2022 |archive-url=https://archive.today/20120804150441/http://www.mathworks.in/help/toolbox/nnet/ug/bss38ji-1.html |archive-date=4 August 2012 |url-status=dead}}</ref> When an input is present, the first layer computes the distance from the input vector to the training input vectors. This produces a vector where its elements indicate how close the input is to the training input. The second layer sums the contribution for each class of inputs and produces its net output as a vector of probabilities. Finally, a compete transfer function on the output of the second layer picks the maximum of these probabilities, and produces a 1 (positive identification) for that class and a 0 (negative identification) for non-targeted classes.▼
▲PNN is often used in classification problems.<ref>http://www.mathworks.in/help/toolbox/nnet/ug/bss38ji-1.html</ref> When an input is present, the first layer computes the distance from the input vector to the training input vectors. This produces a vector where its elements indicate how close the input is to the training input. The second layer sums the contribution for each class of inputs and produces its net output as a vector of probabilities. Finally, a compete transfer function on the output of the second layer picks the maximum of these probabilities, and produces a 1 (positive identification) for that class and a 0 (negative identification) for non-targeted classes.
=== Input layer ===
Line 17 ⟶ 13:
===Pattern layer===
This layer contains one neuron for each case in the training data set. It stores the values of the predictor variables for the case along with the target value. A hidden neuron computes the [[Euclidean distance]] of the test case from the
===Summation layer===
For PNN
===Output layer===
Line 26 ⟶ 22:
== Advantages==
There are several advantages and disadvantages using PNN instead of [[multilayer perceptron]].<ref>{{cite web |url=http://www.dtreg.com/pnn.htm |title=Probabilistic and General Regression Neural Networks |access-date=2012-03-22 |url-status=dead |archive-url=https://web.archive.org/web/20120302075157/http://www.dtreg.com/pnn.htm |archive-date=2012-03-02 }}</ref>
* PNNs are much faster than multilayer perceptron networks.
* PNNs can be more accurate than multilayer perceptron networks.
Line 38 ⟶ 34:
==Applications based on PNN==
* probabilistic neural networks in modelling structural deterioration of stormwater pipes.<ref>{{cite journal |last1=Tran |first1=D. H. |last2=Ng |first2=A. W. M. |last3=Perera |first3=B. J. C. |last4=Burn |first4=S. |last5=Davis |first5=P. |title=Application of probabilistic neural networks in modelling structural deterioration of stormwater pipes |journal=Urban Water Journal |date=September 2006 |volume=3 |issue=3 |pages=175–184 |doi=10.1080/15730620600961684 |bibcode=2006UrbWJ...3..175T |s2cid=15220500 |url=http://vuir.vu.edu.au/583/1/UrbanWater-Dung.pdf|archive-url=https://web.archive.org/web/20170808222146/http://vuir.vu.edu.au/583/1/UrbanWater-Dung.pdf|archive-date=8 August 2017 |access-date=27 February 2023}}</ref>
* probabilistic neural networks method to gastric endoscope samples diagnosis based on FTIR spectroscopy.<ref>
* Application of probabilistic neural networks to population pharmacokineties.<ref>{{Cite book | doi=10.1109/IJCNN.2003.1223983| isbn=0-7803-7898-9| chapter=Application of probabilistic neural networks to population pharmacokineties| title=Proceedings of the International Joint Conference on Neural Networks, 2003| year=2003| last1=Berno| first1=E.| last2=Brambilla| first2=L.| last3=Canaparo| first3=R.| last4=Casale| first4=F.| last5=Costa| first5=M.| last6=Della Pepa| first6=C.| last7=Eandi| first7=M.| last8=Pasero| first8=E.| pages=2637–2642| s2cid=60477107}}</ref>
* Probabilistic Neural Networks to the Class Prediction of Leukemia and Embryonal Tumor of Central Nervous System.<ref>{{Cite journal|url=http://dl.acm.org/citation.cfm?id=1011984|doi = 10.1023/B:NEPL.0000035613.51734.48|title = Application of Probabilistic Neural Networks to the Class Prediction of Leukemia and Embryonal Tumor of Central Nervous System|year = 2004|last1 = Huang|first1 = Chenn-Jung|last2 = Liao|first2 = Wei-Chen|journal = Neural Processing Letters|volume = 19|issue = 3|pages = 211–226|s2cid = 5651402|url-access = subscription}}</ref>
* Ship Identification Using Probabilistic Neural Networks.<ref>{{cite journal |last1=Araghi |first1=Leila Fallah |last2=d Khaloozade |first2=Hami |last3=Arvan |first3=Mohammad Reza |title=Ship Identification Using Probabilistic Neural Networks (PNN) |journal=Proceedings of the International MultiConference of Engineers and Computer Scientists |date=19 March 2009 |volume=2 |url=https://www.iaeng.org/publication/IMECS2009/IMECS2009_pp1291-1294.pdf |access-date=27 February 2023 |___location=[[Hong Kong]], China |language=en}}</ref>
* Probabilistic Neural Network-Based sensor configuration management in a wireless ''ad hoc'' network.<ref>{{Cite web |url=http://www.ll.mit.edu/asap/asap_04/DAY2/27_PA_STEVENS.PDF |title=Archived copy |access-date=2012-03-22 |archive-url=https://web.archive.org/web/20100614171621/http://www.ll.mit.edu/asap/asap_04/DAY2/27_PA_STEVENS.PDF |archive-date=2010-06-14 |url-status=dead }}</ref>▼
▲* Probabilistic Neural Network-Based sensor configuration management in a wireless ''ad hoc'' network.<ref>http://www.ll.mit.edu/asap/asap_04/DAY2/27_PA_STEVENS.PDF</ref>
* Probabilistic Neural Network in character recognizing.
* Remote-sensing Image Classification.<ref>{{cite journal|last1=Zhang|first1=Y.|title=Remote-sensing Image Classification Based on an Improved Probabilistic Neural Network|journal=Sensors|date=2009|volume=9|issue=9|pages=7516–7539|doi=10.3390/s90907516|pmid=22400006|pmc=3290485|bibcode=2009Senso...9.7516Z|doi-access=free}}</ref>
== References ==
{{Reflist}}
[[Category:Neural
|