Content deleted Content added
m Task 18 (cosmetic): eval 11 templates: del empty params (2×); hyphenate params (9×); |
m Open access bot: url-access updated in citation with #oabot. |
||
(15 intermediate revisions by 9 users not shown) | |||
Line 1:
A '''probabilistic neural network''' ('''PNN
* Input layer
* Pattern layer
Line 7:
==Layers ==
PNN is often used in classification problems.<ref>{{cite web |url=http://www.mathworks.in/help/toolbox/nnet/ug/bss38ji-1.html
=== Input layer ===
Line 13:
===Pattern layer===
This layer contains one neuron for each case in the training data set. It stores the values of the predictor variables for the case along with the target value. A hidden neuron computes the [[Euclidean distance]] of the test case from the
===Summation layer===
Line 22:
== Advantages==
There are several advantages and disadvantages using PNN instead of [[multilayer perceptron]].<ref>{{cite web |url=http://www.dtreg.com/pnn.htm |title=
* PNNs are much faster than multilayer perceptron networks.
* PNNs can be more accurate than multilayer perceptron networks.
Line 34:
==Applications based on PNN==
* probabilistic neural networks in modelling structural deterioration of stormwater pipes.<ref>{{cite journal |last1=Tran |first1=D. H. |last2=Ng |first2=A. W. M. |last3=Perera |first3=B. J. C. |last4=Burn |first4=S. |last5=Davis |first5=P. |title=Application of probabilistic neural networks in modelling structural deterioration of stormwater pipes |journal=Urban Water Journal |date=September 2006 |volume=3 |issue=3 |pages=175–184 |doi=10.1080/15730620600961684 |bibcode=2006UrbWJ...3..175T |s2cid=15220500 |url=http://vuir.vu.edu.au/583/1/UrbanWater-Dung.pdf|archive-url=https://web.archive.org/web/20170808222146/http://vuir.vu.edu.au/583/1/UrbanWater-Dung.pdf|archive-date=8 August 2017 |access-date=27 February 2023}}</ref>
* probabilistic neural networks method to gastric endoscope samples diagnosis based on FTIR spectroscopy.<ref>{{cite journal |pmid=19810529 | volume=29 | issue=6 | title=[Application of probabilistic neural networks method to gastric endoscope samples diagnosis based on FTIR spectroscopy] | year=2009 | journal=Guang Pu Xue Yu Guang Pu Fen Xi | pages=1553–7| last1=Li | first1=Q. B. | last2=Li | first2=X. | last3=Zhang | first3=G. J. | last4=Xu | first4=Y. Z. | last5=Wu | first5=J. G. | last6=Sun | first6=X. J. }}</ref>
* Application of probabilistic neural networks to population pharmacokineties.<ref>{{Cite book | doi=10.1109/IJCNN.2003.1223983| isbn=0-7803-7898-9| chapter=Application of probabilistic neural networks to population pharmacokineties| title=Proceedings of the International Joint Conference on Neural Networks, 2003| year=2003| last1=Berno| first1=E.| last2=Brambilla| first2=L.| last3=Canaparo| first3=R.| last4=Casale| first4=F.| last5=Costa| first5=M.| last6=Della Pepa| first6=C.| last7=Eandi| first7=M.| last8=Pasero| first8=E.| pages=2637–2642| s2cid=60477107}}</ref>
* Probabilistic Neural Networks to the Class Prediction of Leukemia and Embryonal Tumor of Central Nervous System.<ref>{{Cite journal|url=http://dl.acm.org/citation.cfm?id=1011984|doi = 10.1023/B:NEPL.0000035613.51734.48|title = Application of Probabilistic Neural Networks to the Class Prediction of Leukemia and Embryonal Tumor of Central Nervous System|year = 2004|last1 = Huang|first1 = Chenn-Jung|last2 = Liao|first2 = Wei-Chen|journal = Neural Processing Letters|volume = 19|issue = 3|pages = 211–226|s2cid = 5651402|url-access = subscription}}</ref>
* Ship Identification Using Probabilistic Neural Networks.<ref>
* Probabilistic Neural Network-Based sensor configuration management in a wireless ''ad hoc'' network.<ref>{{Cite web |url=http://www.ll.mit.edu/asap/asap_04/DAY2/27_PA_STEVENS.PDF |title=Archived copy |access-date=2012-03-22 |archive-url=https://web.archive.org/web/20100614171621/http://www.ll.mit.edu/asap/asap_04/DAY2/27_PA_STEVENS.PDF |archive-date=2010-06-14 |url-status=dead }}</ref>
* Probabilistic Neural Network in character recognizing.
* Remote-sensing Image Classification.<ref>{{cite journal|last1=Zhang|first1=Y.|title=Remote-sensing Image Classification Based on an Improved Probabilistic Neural Network|journal=Sensors|date=2009|volume=9|issue=9|pages=7516–7539|doi=10.3390/s90907516|pmid=22400006|pmc=3290485|bibcode=2009Senso...9.7516Z|doi-access=free}}</ref>
== References ==
{{Reflist}}
[[Category:
|