Content deleted Content added
Ligulembot (talk | contribs) AWB assisted migrate {{journal reference}} to {{cite journal}} |
m Open access bot: url-access updated in citation with #oabot. |
||
(48 intermediate revisions by 35 users not shown) | |||
Line 1:
In [[cosmological perturbation theory]], the '''
:<math>S^{||}_{ij}=(\nabla_i\nabla_j-\frac{1}{3}\delta_{ij}\nabla^2)\phi</math>,▼
where <math>S^\perp_i</math> is a spatial vector with <math>\delta^{ij}\nabla_iS_j^\perp=0</math>. This leaves only two independent components of <math>S_{ij}</math>, corresponding to the two [[polarization]]s of [[gravitational wave]]s. The advantage of this formulation is that the scalar, vector and tensor evolution equations are decoupled. In [[representation theory]], this corresponds to decomposing perturbations under the group of [[rotation group|spatial rotation]]s. Two scalar components can further be eliminated by [[gauge transformation]]s, and the vector components are generally ignored, as there are few known physical processes in which they can be generated. As indicated above, the tensor components correspond to gravitational waves.▼
If the perturbed metric <math>g'_{\mu\nu} = g_{\mu\nu}+h_{\mu\nu}</math> where <math>h_{\mu\nu}</math> is the perturbation, then the decomposition is as follows,
<math display="block">h_{00}=-2\psi</math>
*{{cite journal | author = E. Bertschinger | title = Cosmological perturbation theory and structure formation | url = http://arxiv.org/abs/astro-ph/0101009 | year = 2001}}▼
<math display="block">h_{0i}=w_i</math>
<math display="block">h_{ij}=2(\phi g_{ij}+S_{ij})</math>
where the Latin indices ''i'' and ''j'' run over spatial components (1,...,3). The tensor field <math>S_{ij}</math> is traceless under the spatial part of the background metric <math>g_{ij}</math> (''i.e.'' <math>g^{ij}S_{ij}=0</math>). The spatial vector <math>w_i</math> and tensor <math>S_{ij}</math> undergo further decomposition. The vector is written
<math display="block">w_i=w^{||}{}_i+w^{\perp}{}_i,</math>
where <math>\nabla\times\mathbf{w}^{||}=\mathbf{0}</math> and <math>\nabla\cdot\mathbf{w}^{\perp}=0</math> (<math>\nabla_i</math> is the [[covariant derivative]] defined with respect to the spatial metric <math>g_{ij}</math>). The notation is used because in [[Fourier space]], these equations indicate that the vector points parallel and perpendicular to the direction of the wavevector, respectively. The parallel component can be expressed as the gradient of a scalar, <math>w^{||}{}_i=\nabla_iA</math>. Thus <math>\mathbf{w}</math> can be written as a combination of a scalar and a divergenceless, two-component vector.
Finally, an analogous decomposition can be performed on the traceless tensor field <math>S_{ij}</math>.<ref>{{cite journal | author = J. M. Stewart | title = Perturbations of the Friedmann-Robertson-Walker cosmological models | journal = Classical and Quantum Gravity | volume = 7 | number = 7 | pages = 1169–1180 | url = http://stacks.iop.org/0264-9381/7/i=7/a=013 | year = 1990 | doi=10.1088/0264-9381/7/7/013| bibcode = 1990CQGra...7.1169S | s2cid = 250864898 | url-access = subscription }}</ref> It can be written
[[Category:Cosmology]]▼
<math display="block">S_{ij}=S^{||}{}_{ij}+S^{\perp}_{ij}+S^T{}_{ij},</math>
[[Category:General relativity]]▼
where
▲
where <math>B</math> is a scalar (the combination of derivatives is set by the condition that <math>S</math> be traceless), and
<math display="block"> S^\perp{}_{ij} = \nabla_iS^\perp{}_j + \nabla_j S^\perp{}_i,</math>
where <math>S^\perp{}_i</math> is a divergenceless spatial vector. This leaves only two independent components of <math>S^T{}_{ij}</math>, corresponding to the two [[Polarization (waves)|polarizations]] of [[gravitational wave]]s. (Since the graviton is massless, the two polarizations are orthogonal to the direction of propagation, just like the photon.)
▲
==See also==
* [[Helmholtz decomposition]]
==Notes==
{{reflist}}
==References==
▲*{{
*{{cite journal | author = E. M. Lifshitz |title = On the gravitational stability of the expanding universe|journal=J. Phys. USSR | volume=10| pages=116| year=1946}}
*{{cite journal | author = Eanna E. Flanagan, Scott A. Hughes |title = The basics of gravitational wave theory|journal=New Journal of Physics | volume=7| pages=204| year=2005| doi=10.1088/1367-2630/7/1/204 | s2cid=9530657 | arxiv=gr-qc/0501041| bibcode=2005NJPh....7..204F }}
*{{cite book | author = E. Poisson, C. M. Will |title = Gravity: Newtonian, Post-Newtonian, Relativistic|publisher=Cambridge University Press | pages=257 | year=2014}}
{{Portal bar|Physics}}
{{DEFAULTSORT:Scalar-vector-tensor decomposition}}
|