Extouch triangle: Difference between revisions

Content deleted Content added
mNo edit summary
 
(28 intermediate revisions by 11 users not shown)
Line 1:
{{short description|Triangle formed from the points of tangency of a given triangle's excircles}}
[[Image:Extouch Triangle and Nagel Point.svg|right|frame|325px|The extouch triangle (red, ΔT<sub>A</sub>T<sub>B</sub>T<sub>C</sub>) and the [[Nagel point]] (blue, N) of a triangle (black, ΔABC). The orange circles are the [[excircles]] of the triangle.]]
[[Image:Extouch Triangle and Nagel Point.svg|right|frame|
The '''extouch triangle''' of a triangle is formed by joining the points at which the three [[excircle]]s touch the triangle. The vertices of the extouch triangle are given in [[trilinear coordinates]] by:
{{legend-line|solid #333333|Arbitrary triangle {{math|△''ABC''}}}}
{{legend-line|solid orange|[[Excircle]]s, tangent to the sides of {{math|△''ABC''}} at {{mvar|T{{sub|A}}, T{{sub|B}}, T{{sub|C}}}}}}
{{legend-line|solid red|'''Extouch triangle''' {{math|△''T{{sub|A}}T{{sub|B}}T{{sub|C}}''}}}}
{{legend-line|solid #1e90ff|[[Splitter (geometry)|Splitters]] of the perimeter {{mvar|{{overline|AT}}{{sub|A}}, {{overline|BT}}{{sub|B}}, {{overline|CT}}{{sub|C}}}}; intersect at the [[Nagel point]] {{mvar|N}}}}]]
 
TheIn [[Euclidean geometry]], the '''extouch triangle''' of a [[triangle]] is formed by joining the points at which the three [[excircle]]s touch the triangle. The vertices of the extouch triangle are given in [[trilinear coordinates]] by:
:<math>T_A = 0 : \csc^2{\left( B/2 \right)} : \csc^2{\left( C/2 \right)}</math>
:<math>T_B = \csc^2{\left( A/2 \right)} : 0 : \csc^2{\left( C/2 \right)}</math>
:<math>T_C = \csc^2{\left( A/2 \right)} : \csc^2{\left( B/2 \right)} : 0</math>
 
==Coordinates==
Or, equivalently, where a,b,c are the lengths of the sides opposite angles A, B, C respectively,
The [[vertex (geometry)|vertices]] of the extouch triangle are given in [[trilinear coordinates]] by:
 
<math display=block>\begin{array}{rccccc}
:<math>T_A = 0 : \frac{a-b+c}{b} : \frac{a+b-c}{c}</math>
:<math>T_BT_A =& 0 &:& \csc^2 \frac{-a+b+cB}{a2} &:& 0 :\csc^2 \frac{a+b-cC}{c2}</math> \\
:<math>T_CT_B =& \csc^2 \frac{-a+b+cA}{a2} &:& 0 &:& \csc^2 \frac{a-b+cC}{b2} : 0</math>\\
T_C =& \csc^2 \frac{A}{2} &:& \csc^2 \frac{B}{2} &:& 0
\end{array}</math>
 
Or,or equivalently, where {{mvar|a, b, c}} are the lengths of the sides opposite angles {{mvar|A, B, C}} respectively,
The intersection of the lines connecting the vertices of the original triangle to the corresponding vertices of the extouch triangle is the [[Nagel point]]. This is shown in blue and labelled "N" in the diagram.
 
<math display=block>\begin{array}{rccccc}
==Area==
:<math> T_A =& 0 &:& \frac{a \, - \, b \, + \, c}{b} &:& \frac{a \, + \, b \, - \, c}{c}</math> \\
T_B =& \frac{-a \, + \, b \, + \, c}{a} &:& 0 &:& \frac{a \, + \, b \, - \, c}{c} \\
T_C =& \frac{-a \, + \, b \, + \, c}{a} &:& \frac{a \, - \, b \, + \, c}{b} &:& 0
\end{array}</math>
 
Also, with {{mvar| s}} denoting the [[semiperimeter]] of the triangle, the vertices of the extouch triangle are given in [[barycentric coordinates]] by:
The area of the extouch triangle, <math>A_T</math>, is given by:
 
<math display=block>\begin{array}{rccccc}
:<math>A_T= A \frac{2r^2s}{abc}</math>
T_A =& 0 &:& s-b &:& s-c \\
T_B =& s-a &:& 0 &:& s-c \\
T_C =& s-a &:& s-b &:& 0
\end{array}</math>
 
==Related figures==
where <math>A</math>, <math>r</math>, <math>s</math> are the area, radius of the [[incircle]] and [[semiperimeter]] of the original triangle, and <math>a</math>, <math>b</math>, <math>c</math> are the side lengths of the original triangle.
The intersectiontriangle's of[[Splitter (geometry)|splitters]] are the lines connecting the vertices of the original triangle to the corresponding vertices of the extouch triangle; they bisect the triangle's perimeter and meet isat the [[Nagel point]]. This is shown in blue and labelled "N" in the diagram.
 
The [[Mandart inellipse]] is tangent to the sides of the reference triangle at the three vertices of the extouch triangle.<ref>{{citation
This is the same area as the [[intouch triangle]].
| last = Juhász | first = Imre
| journal = Annales Mathematicae et Informaticae
| mr = 3005114
| pages = 37–46
| title = Control point based representation of inellipses of triangles
| url = http://ami.ektf.hu/uploads/papers/finalpdf/AMI_40_from37to46.pdf
| volume = 40
| year = 2012}}.</ref>
 
==See alsoArea==
*[[Excircle]]
*[[Incircle]]
*[[Intouch triangle]]
*[[Cevian triangle]]
 
The area of the extouch triangle, <math>A_T</math>{{mvar|K{{sub|T}}}}, is given by:
==External links==
* [http://mathworld.wolfram.com/ExtouchTriangle.html Extouch triangle at MathWorld]
 
:<math>A_TK_T= A K\frac{2r^2s}{abc}</math>
[[Category:Circles]]
[[Category:Triangle geometry]]
 
where <math>A</math>,{{mvar|K}} <math>and {{mvar|r</math>, <math>s</math>}} are the area, and radius of the [[incircle]], and{{mvar|s}} is the [[semiperimeter]] of the original triangle, and <math>{{mvar|a</math>, <math>b</math>, <math>c</math>}} are the side lengths of the original triangle.
[[km:ត្រីកោណប៉ះក្រៅ]]
 
This is the same area as that of the [[intouch triangle]].<ref>Weisstein, Eric W. "Extouch Triangle." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/ExtouchTriangle.html</ref>
 
==References==
{{reflist}}
 
[[Category:Circles]]
[[Category:Objects defined for a triangle]]