Content deleted Content added
mNo edit summary |
|||
(28 intermediate revisions by 11 users not shown) | |||
Line 1:
{{short description|Triangle formed from the points of tangency of a given triangle's excircles}}
[[Image:Extouch Triangle and Nagel Point.svg|right|frame|
The '''extouch triangle''' of a triangle is formed by joining the points at which the three [[excircle]]s touch the triangle. The vertices of the extouch triangle are given in [[trilinear coordinates]] by:▼
{{legend-line|solid #333333|Arbitrary triangle {{math|△''ABC''}}}}
{{legend-line|solid orange|[[Excircle]]s, tangent to the sides of {{math|△''ABC''}} at {{mvar|T{{sub|A}}, T{{sub|B}}, T{{sub|C}}}}}}
{{legend-line|solid red|'''Extouch triangle''' {{math|△''T{{sub|A}}T{{sub|B}}T{{sub|C}}''}}}}
{{legend-line|solid #1e90ff|[[Splitter (geometry)|Splitters]] of the perimeter {{mvar|{{overline|AT}}{{sub|A}}, {{overline|BT}}{{sub|B}}, {{overline|CT}}{{sub|C}}}}; intersect at the [[Nagel point]] {{mvar|N}}}}]]
▲
==Coordinates==
Or, equivalently, where a,b,c are the lengths of the sides opposite angles A, B, C respectively,▼
The [[vertex (geometry)|vertices]] of the extouch triangle are given in [[trilinear coordinates]] by:
<math display=block>\begin{array}{rccccc}
:<math>T_A = 0 : \frac{a-b+c}{b} : \frac{a+b-c}{c}</math>▼
T_C =& \csc^2 \frac{A}{2} &:& \csc^2 \frac{B}{2} &:& 0
\end{array}</math>
▲
The intersection of the lines connecting the vertices of the original triangle to the corresponding vertices of the extouch triangle is the [[Nagel point]]. This is shown in blue and labelled "N" in the diagram.▼
<math display=block>\begin{array}{rccccc}
T_B =& \frac{-a \, + \, b \, + \, c}{a} &:& 0 &:& \frac{a \, + \, b \, - \, c}{c} \\
T_C =& \frac{-a \, + \, b \, + \, c}{a} &:& \frac{a \, - \, b \, + \, c}{b} &:& 0
\end{array}</math>
Also, with {{mvar| s}} denoting the [[semiperimeter]] of the triangle, the vertices of the extouch triangle are given in [[barycentric coordinates]] by:
The area of the extouch triangle, <math>A_T</math>, is given by:▼
<math display=block>\begin{array}{rccccc}
:<math>A_T= A \frac{2r^2s}{abc}</math>▼
T_A =& 0 &:& s-b &:& s-c \\
T_B =& s-a &:& 0 &:& s-c \\
T_C =& s-a &:& s-b &:& 0
\end{array}</math>
==Related figures==
where <math>A</math>, <math>r</math>, <math>s</math> are the area, radius of the [[incircle]] and [[semiperimeter]] of the original triangle, and <math>a</math>, <math>b</math>, <math>c</math> are the side lengths of the original triangle.▼
▲The
The [[Mandart inellipse]] is tangent to the sides of the reference triangle at the three vertices of the extouch triangle.<ref>{{citation
| last = Juhász | first = Imre
| journal = Annales Mathematicae et Informaticae
| mr = 3005114
| pages = 37–46
| title = Control point based representation of inellipses of triangles
| url = http://ami.ektf.hu/uploads/papers/finalpdf/AMI_40_from37to46.pdf
| volume = 40
| year = 2012}}.</ref>
==
[[Category:Circles]]▼
▲where
This is the same area as that of the [[intouch triangle]].<ref>Weisstein, Eric W. "Extouch Triangle." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/ExtouchTriangle.html</ref>
==References==
{{reflist}}
▲[[Category:Circles]]
[[Category:Objects defined for a triangle]]
|