Content deleted Content added
→Related figures: splitters |
|||
(19 intermediate revisions by 7 users not shown) | |||
Line 1:
{{short description|Triangle formed from the points of tangency of a given triangle's excircles}}
[[Image:Extouch Triangle and Nagel Point.svg|right|frame|
In [[geometry]], the '''extouch triangle''' of a [[triangle]] is formed by joining the points at which the three [[excircle]]s touch the triangle.▼
{{legend-line|solid #333333|Arbitrary triangle {{math|△''ABC''}}}}
{{legend-line|solid orange|[[Excircle]]s, tangent to the sides of {{math|△''ABC''}} at {{mvar|T{{sub|A}}, T{{sub|B}}, T{{sub|C}}}}}}
{{legend-line|solid red|'''Extouch triangle''' {{math|△''T{{sub|A}}T{{sub|B}}T{{sub|C}}''}}}}
{{legend-line|solid #1e90ff|[[Splitter (geometry)|Splitters]] of the perimeter {{mvar|{{overline|AT}}{{sub|A}}, {{overline|BT}}{{sub|B}}, {{overline|CT}}{{sub|C}}}}; intersect at the [[Nagel point]] {{mvar|N}}}}]]
▲In [[Euclidean geometry]], the '''extouch triangle''' of a [[triangle]] is formed by joining the points at which the three [[excircle]]s touch the triangle.
==Coordinates==
The [[vertex (geometry)|vertices]] of the extouch triangle are given in [[trilinear coordinates]] by:
<math display=block>\begin{array}{rccccc}
T_C =& \csc^2 \frac{A}{2} &:& \csc^2 \frac{B}{2} &:& 0
\end{array}</math>
<math display=block>\begin{array}{rccccc}
T_C =& \frac{-a \, + \, b \, + \, c}{a} &:& \frac{a \, - \, b \, + \, c}{b} &:& 0
\end{array}</math>
Also, with {{mvar| s}} denoting the [[semiperimeter]] of the triangle, the vertices of the extouch triangle are given in [[barycentric coordinates]] by:
<math display=block>\begin{array}{rccccc}
T_A =& 0 &:& s-b &:& s-c \\
T_B =& s-a &:& 0 &:& s-c \\
T_C =& s-a &:& s-b &:& 0
\end{array}</math>
==Related figures==
The triangle's [[Splitter (geometry)|splitters
The [[Mandart inellipse]] is tangent to the sides of the
| last = Juhász | first = Imre
| journal = Annales Mathematicae et Informaticae
Line 30 ⟶ 48:
==Area==
The area of the extouch triangle,
:<math>
where
This is the same area as that of the [[intouch triangle]].<ref>Weisstein, Eric W. "Extouch Triangle." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/ExtouchTriangle.html</ref>
==References==
{{reflist}}
[[Category:Circles]]
[[Category:
|