Content deleted Content added
→Dirac delta function: Added the Fourier transform of the Dirac delta function. |
|||
(19 intermediate revisions by 18 users not shown) | |||
Line 18:
==History==
The ''rect'' function has been introduced 1953 by [[Philip Woodward|Woodward]]<ref>{{Cite journal |last=Klauder |first=John R |title=The Theory and Design of Chirp Radars |pages=745–808 |journal=Bell System Technical Journal |year=1960 |volume=39 |issue=4 |doi=10.1002/j.1538-7305.1960.tb03942.x |url=https://ieeexplore.ieee.org/document/6773600 |url-access=subscription }}</ref> in "Probability and Information Theory, with Applications to Radar"<ref>{{Cite book |last=Woodward |first=Philipp M |title=Probability and Information Theory, with Applications to Radar |publisher=Pergamon Press |pages=29 |year=1953 }}</ref> as an ideal [[Window function#Rectangular window|cutout operator]], together with the [[Sinc function|''sinc'' function]]<ref>{{Cite book |last=Higgins |first=John Rowland |title=Sampling Theory in Fourier and Signal Analysis: Foundations |pages=4 |publisher=Oxford University Press Inc. |year=1996 |isbn=0198596995 }}</ref><ref>{{Cite book |last=Zayed |first=Ahmed I |title=Handbook of Function and Generalized Function Transformations |pages=507 |publisher=CRC Press |year=1996 |isbn=9780849380761 }}</ref> as an ideal [[Whittaker–Shannon interpolation formula|interpolation operator]], and their counter operations which are [[Sampling (signal processing)|sampling]] ([[Dirac comb#Dirac-comb identity|''comb'' operator]]) and [[Periodic summation|replicating]] ([[Dirac comb#Dirac-comb identity|''rep'' operator]]), respectively.
==Relation to the boxcar function==
Line 27:
where <math>H(x)</math> is the [[Heaviside step function]]; the function is centered at <math>X</math> and has duration <math>Y</math>, from <math>X-Y/2</math> to <math>X+Y/2.</math>
==Fourier transform of the rectangular function==
[[File:Sinc_function_(normalized).svg|thumb|400px|right|Plot of normalized <math>\
The [[Fourier transform#Tables of important Fourier transforms|unitary Fourier transforms]] of the rectangular function are<ref name="wolfram"/>
<math display="block">\int_{-\infty}^\infty \
=\frac{\sin(\pi f)}{\pi f} = \
using ordinary frequency {{mvar|f}}, where [[sinc function|<math>\
<math display="block">\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty \
=\frac{1}{\sqrt{2\pi}}\cdot \frac{\
=\frac{1}{\sqrt{2\pi}} \
</math>
using angular frequency <math>\omega</math>, where [[sinc function|<math>\
For <math>\
=a \frac{\sin(\pi af)}{\pi af} = a\ \operatorname{sinc}_\pi{(a f)}.</math>
==Relation to the triangular function==
We can define the [[triangular function]] as the [[convolution]] of two rectangular functions:
<math display=block>\
==Use in probability==
Line 62:
The pulse function may also be expressed as a limit of a [[rational function]]:
<math display="block">\Pi(t) = \lim_{n\rightarrow \infty, n\in \mathbb(Z)} \frac{1}{(2t)^{2n}+1}.</math>
===Demonstration of validity===
Line 68:
It follows that:
<math display="block">\lim_{n\rightarrow \infty, n\in \mathbb(Z)} \frac{1}{(2t)^{2n}+1} = \frac{1}{0+1} = 1, |t|<\tfrac{1}{2}.</math>
Second, we consider the case where <math display="inline">|t|>\frac{1}{2}.</math> Notice that the term <math display="inline">(2t)^{2n}</math> is always positive for integer <math>n.</math> However, <math>2t>1</math> and hence <math display="inline">(2t)^{2n}</math> grows very large for large <math>n.</math>
It follows that:
<math display="block">\lim_{n\rightarrow \infty, n\in \mathbb(Z)} \frac{1}{(2t)^{2n}+1} = \frac{1}{+\infty+1} = 0, |t|>\tfrac{1}{2}.</math>
Third, we consider the case where <math display="inline">|t| = \frac{1}{2}.</math> We may simply substitute in our equation:
<math display="block">\lim_{n\rightarrow \infty, n\in \mathbb(Z)} \frac{1}{(2t)^{2n}+1} = \lim_{n\rightarrow \infty, n\in \mathbb(Z)} \frac{1}{1^{2n}+1} = \frac{1}{1+1} = \tfrac{1}{2}.</math>
We see that it satisfies the definition of the pulse function. Therefore,
<math display="block">\
0 & \mbox{if } |t| > \frac{1}{2} \\
\frac{1}{2} & \mbox{if } |t| = \frac{1}{2} \\
Line 88:
== Dirac delta function ==
The rectangle function can be used to represent the [[Dirac delta function]] <math>\delta (x)</math>.<ref name=":0">{{Cite book |
<math display="block">
To obtain <math>
<math display="block">
and this can be written in terms of the Dirac delta function as,
<math display="block">
<math display="block">\delta (f)
= \int_{-\infty}^\infty \delta (t) \cdot e^{-i 2\pi f t} \, dt = \lim_{a \to 0} \frac{1}{a} \int_{-\infty}^\infty \
= \lim_{a \to 0} \
where the [[sinc function]] here is the normalized sinc function. Because the first zero of the sinc function is at <math>f = 1 / a</math> and <math>a</math> goes to infinity, the Fourier transform of <math>\delta (
means that the frequency spectrum of the Dirac delta function is infinitely broad. As a pulse is shorten in time, it is larger in spectrum.
▲<math display="block">\delta (x) = 1,</math>
▲means that the frequency spectrum of the Dirac delta function is infinitely broad. As a pulse is shorten in time, it is larger in spectrum.
==See also==
*[[Fourier transform]]
*[[Square wave (waveform)|Square wave]]
*[[Step function]]
*[[Top-hat filter]]
*[[Boxcar function]]
==References==
|