Content deleted Content added
m Open access bot: url-access updated in citation with #oabot. |
|||
Line 31:
The [[Fourier transform#Tables of important Fourier transforms|unitary Fourier transforms]] of the rectangular function are<ref name="wolfram"/>
<math display="block">\int_{-\infty}^\infty \operatorname{rect}(t)\cdot e^{-i 2\pi f t} \, dt
=\frac{\sin(\pi f)}{\pi f} = \operatorname{sinc}(\pi f) =\operatorname{sinc}_\pi(f),</math>
using ordinary frequency {{mvar|f}}, where [[sinc function|<math>\operatorname{sinc}_\pi</math>]] is the normalized form<ref>Wolfram MathWorld, https://mathworld.wolfram.com/SincFunction.html</ref> of the [[sinc function]] and
<math display="block">\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty \operatorname{rect}(t)\cdot e^{-i \omega t} \, dt
|