Content deleted Content added
m capitalization per WP:Section caps |
→Space segment: omit unnecessary wording |
||
(One intermediate revision by one other user not shown) | |||
Line 10:
| COSPAR_ID =
| SATCAT =
| mission_duration =
| spacecraft_type =
Line 16:
| dry_mass =
| launch_mass =
| power =
| launch_date =
Line 23:
| launch_contractor =
| last_contact =
| decay_date =
| orbit_epoch =
Line 46:
* Weather satellite services that require the fast delivery of large quantities of data around the world.
The system has been developed as part of the [[ARTES]] 7 programme and is intended to be an independent, European satellite system that reduces time delays in the transmission of large quantities of data. The programme is similar to the American [[Tracking and Data Relay Satellite System]] that was set up to support the Space Shuttle—but EDRS is using a new generation [[laser communication terminal]] (LCT) which carries data at a much larger [[bit rate]]: the laser terminal transmits 1.8 Gbit/s across 45,000 km (the distance of a LEO-GEO link),<ref name=VA249-2019/> while the TDRSS provides ground reception rates of 600 Mbit/s in the [[S-band]] and 800 Mbit/s in the [[Ku band|Ku-]] and [[Ka band|Ka-bands]].<ref name=ISS-comms-2019>{{Cite web|first=Matt |last=Williams |publisher=Universe Today |title=The ISS Now Has Better Internet Than Most of Us After Its Latest Upgrade |url=https://www.sciencealert.com/the-iss-now-has-better-internet-than-most-of-us-after-its-latest-upgrade|date=26 Aug 2019|access-date=2020-06-23|website=ScienceAlert|language=en-gb}}</ref>
Such a terminal was successfully tested in 2007/8 during in-orbit verification between the German radar satellite [[TerraSAR-X]] and the American [[Near Field Infrared Experiment|NFIRE]] satellite, both in LEO, when it achieved 5.5 gigabits per second.<ref name=TerraSAR-X-NFIRE-2009>[https://www.dlr.de/content/en/downloads/news-archive/2009/20090615_two-years-of-successful-operation-for-germany-s-terrasar-x-the-earth-observation-satellite_17874.pdf ''Two years of successful operation for Germany's TerraSAR-X, the Earth observation satellite'' DLR June 2009]{{Dead link|date=August 2024 |bot=InternetArchiveBot |fix-attempted=yes }}</ref> A similar LCT was installed on the commercial telecommunication satellite [[Alphasat]].<ref>
== Network ==
Line 58:
The first EDRS payload, '''EDRS-A''', comprising a laser communication terminal and a [[Ka band|K<sub>a</sub> band]] inter-satellite link, was placed on-board [[Eutelsat]] commercial telecommunication satellite, called Eutelsat 9B (COSPAR 2016-005A). The satellite was launched in January 2016 by a [[Proton-M]] rocket and will be positioned at 9°E.<ref name="Eutelsat9Blaunched">{{cite web|title=Lift-off for Europe's space laser network|url=https://www.bbc.com/news/science-environment-35446894|website=bbc.com|date=30 January 2016|access-date=30 January 2016}}</ref><ref>[http://www.satellitetoday.com/launch/2014/01/16/ils-to-launch-eutelsat-9b-satellite-in-2015/ ILS to Launch Eutelsat 9B Satellite in 2015]</ref>
A second EDRS payload was launched aboard a dedicated spacecraft. The '''EDRS-C''' (COSPAR 2019-049A), which is also carrying a laser communication terminal, was launched on 6 August 2019<ref name=EDRS-C>{{cite news|title=Arianespace selected by Airbus Defence and Space to launch EDRS-C satellite|url=http://www.arianespace.com/press-release/arianespace-selected-by-airbus-defence-and-space-to-launch-edrs-c-satellite/|access-date=4 October 2015|publisher=Arianespace|date=19 March 2015}}</ref><ref name=EDRS-C-2018>{{cite news|title=Europe's EDRS-C/Hylas-3 satellite launch set for early 2018|url=https://www.spaceintelreport.com/europes-edrschylas3-satellite-launch-set-for-early-2018/|access-date=18 August 2017|publisher=Space Intel Report|date=15 April 2017}}</ref> and will be positioned at 31°E.<ref name=VA249-2019>{{Cite web|url=http://www.arianespace.com/wp-content/uploads/2019/07/VA249-press-kit_EN.pdf|title=Ariane-5 VA249: Intelsat 39 / EDRS-C press kit |date=Aug 2019}}</ref><ref name=Haus-2012>{{Cite journal|url = http://icsos2014.nict.go.jp/contents/pdf/S1-3.pdf|title = European Data Relay System – one year to go!|last = Hauschildt|first = Harald|date = 2012|journal = International Conference on Space Optical Systems and Applications
The EDRS A and C form the initial core [[space infrastructure]] that provides direct coverage for LEO satellites over Europe, the Middle East, Africa, the Americas, Asia, and the Poles. The initial plan was to develop two further spacecraft to complement the system from 2020 onwards, affording a complete coverage of the Earth and providing long-term system redundancy beyond 2030.
Line 73:
== Operations ==
The first users for EDRS were the [[Sentinel (satellite)|Sentinel-1 and -2 satellites]] of the [[Copernicus Programme]] (formerly the Global Monitoring for Environment and Security or GMES). The Sentinel satellites provide data for the operational provision of geo-information products and services throughout Europe and the globe. EDRS provides the data relay services for the Sentinel satellites since 2016, facilitating a rapid downlink of large volumes of data (including imagery, voice, and video).<ref name=":0" />
== Implementation ==
Line 80:
{{update after|2016}}
{{
== See also ==
|