P-adic exponential function: Difference between revisions

Content deleted Content added
Definition of exp_p and log_p and basic properties
 
m References: cosmetic
 
(38 intermediate revisions by 23 users not shown)
Line 1:
{{Short description|Mathematical function}}
{{DISPLAYTITLE:''p''-adic exponential function}}
In [[mathematics]], particularly [[P-adic analysis|''p''-adic analysis]], the '''''p''-adic exponential function''' is a ''p''-adic analogue of the usual [[exponential function]] on the [[complex numbers]]. As in the complex case, it has an inverse function, named the '''''p''-adic logarithm'''.
 
In [[mathematics]], particularly [[P-adic analysis|''p''-adic analysis]], the '''''p''-adic exponential function''' is a ''p''-adic analogue of the usual [[exponential function]] on the [[complex numbers]].
 
==Definition==
 
The usual exponential function on '''C''' is defined by the infinite series
:<math>\exp(z)=\sum_{n=0}^\infty \frac{z^n}{n!}.</math>
Line 11 ⟶ 10:
However, unlike exp which converges on all of '''C''', exp<sub>''p''</sub> only converges on the disc
:<math>|z|_p<p^{-1/(p-1)}.</math>
This is because ''p''-adic series converge [[if and only if]] the summands tend to zero, and since the ''n''! in the denominator of each summand tends to make them very large ''p''-adically, rather a small value of ''z'' is needed in the numerator. It follows from [[Legendre's formula]] that if <math>|z|_p < p^{-1/(p-1)}</math> then <math>\frac{z^n}{n!}</math> tends to <math>0</math>, ''p''-adically.
 
Although the ''p''-adic exponential is sometimes denoted ''e''<sup>''x''</sup>, the [[e (mathematical constant)|number ''e'']] itself has no ''p''-adic analogue. This is because the power series exp<sub>''p''</sub>(''x'') does not converge at {{nowrap|''x'' {{=}} 1}}. It is possible to choose a number ''e'' to be a ''p''-th root of exp<sub>''p''</sub>(''p'') for {{nowrap|''p'' ≠ 2}},{{efn|or a 4th root of exp<sub>2</sub>(4), for {{nowrap|''p'' {{=}} 2}}}} but there are multiple such roots and there is no canonical choice among them.<ref>{{harvnb|Robert|2000|p=252}}</ref>
 
==''p''-adic logarithm function==
 
The power series
One can also define a '''''p''-adic logarithm function''' by the power series
:<math>\log_p(1+zx)=\sum_{n=1}^\infty \frac{(-1)^{n+1}zx^n}{n},</math>
converges for ''x'' in '''C'''<sub>''p''</sub> satisfying |''x''|<sub>''p''</sub>&nbsp;&lt;&nbsp;1 and so defines the '''''p''-adic logarithm function''' log<sub>''p''</sub>(''z'') for |''z''&nbsp;&minus;&nbsp;1|<sub>''p''</sub>&nbsp;&lt;&nbsp;1 satisfying the usual property log<sub>''p''</sub>(''zw'')&nbsp;=&nbsp;log<sub>''p''</sub>''z''&nbsp;+&nbsp;log<sub>''p''</sub>''w''. The Butfunction thislog<sub>''p''</sub> can be extended to all of '''C'''{{SubSup||''p''|×}} (the set of nonzero elements of '''C'''<sub>''p''</sub>) by writingimposing anythat it continues to satisfy this last property and setting log<sub>''zp''</sub>(''p'')&nbsp;=&nbsp;0. inSpecifically, every element ''w'' of '''C'''<sub>{{SubSup||''p''|×}} can be written as ''w''&nbsp;=&nbsp;''p<sup>r</subsup>''·ζ·''z'' aswith ''r'' a [[rational number]], ζ a [[root of unity]], and |''z''&nbsp;=&minus;&nbsp;1|<sub>''p''<sup/sub>&nbsp;&lt;&nbsp;1,<ref>{{harvnb|Cohen|2007|loc=Proposition 4.4.44}}</ref> in which case log<sub>''mp''</supsub>·(''uw''·)&nbsp;=&nbsp;log<sub>''vp'',</sub>(''z'').{{efn|In wherefactoring ''mw'' as above, there is a rationalchoice number,of a root involved in writing ''up<sup>r</sup>'' since ''r'' is rational; however, different choices differ only by multiplication by a root of unity, ofwhich ordergets coprimeabsorbed tointo the factor ζ.}} This function on '''C'''{{SubSup||''p'',|×}} andis sometimes called the ''v'Iwasawa logarithm''' liesto inemphasize the original ___domainchoice of convergence for log<sub>''p''</sub>(''p'')&nbsp;=&nbsp;0. In fact, sothere is an extension of the logarithm from |''vz''&nbsp;&minus;&nbsp;1|<sub>''p''</sub>&nbsp;&lt;&nbsp;1. to Weall thenof define'''C'''{{SubSup||''p''|×}} for each choice of log<sub>''p''</sub>(''zp'') toin be log'''C'''<sub>''p''</sub>(''v'').<ref>{{harvnb|Cohen|2007|loc=§4.4.11}}</ref>
 
==Properties==
 
If ''z'' and ''w'' are both in the [[radius of convergence]] for exp<sub>''p''</sub>, then their sum is too and we have the usual addition formula: exp<sub>''p''</sub>(''z''&nbsp;+&nbsp;''w'')&nbsp;=&nbsp;exp<sub>''p''</sub>(''z'')exp<sub>''p''</sub>(''w'').
 
Similarly if ''z'' and ''w'' are nonzero elements of '''C'''<sub>''p''</sub> then log<sub>''p''</sub>(''zw'')&nbsp;=&nbsp;log<sub>''p''</sub>''z''&nbsp;+&nbsp;log<sub>''p''</sub>''w''.
 
And for suitableFor ''z'', soin thatthe everything___domain isof definedexp<sub>''p''</sub>, we have exp<sub>''p''</sub>(log<sub>''p''</sub>(1+''z''))&nbsp;=&nbsp;1+''z'' and log<sub>''p''</sub>(exp<sub>''p''</sub>(''z''))&nbsp;=&nbsp;''z''.
 
The roots of the Iwasawa logarithm log<sub>''p''</sub>(''z'') are exactly the elements of '''C'''<sub>''p''</sub> of the form ''p<sup>r</sup>''·ζ where ''r'' is a rational number and ζ is a root of unity.<ref>{{harvnb|Cohen|2007|loc=Proposition 4.4.45}}</ref>
 
Note that there is no analogue in '''C'''<sub>''p''</sub> of [[Euler's identity]], ''e''<sup>2''πi''</sup>&nbsp;=&nbsp;1. This is a corollary of [[Strassmann's theorem]].
 
Another major difference to the situation in '''C''' is that the ___domain of convergence of exp<sub>''p''</sub> is much smaller than that of log<sub>''p''</sub>. A modified exponential function &mdash; the [[Artin–Hasse exponential]] &mdash; can be used instead which converges on |''z''|<sub>''p''</sub>&nbsp;&lt;&nbsp;1.
 
==Notes==
{{Notelist}}
 
==References==
=== Citations ===
{{reflist}}
 
=== List of references ===
* Chapter 12 of {{cite book | last=Cassels | first=J. W. S. | authorlink=J. W. S. Cassels | title=Local fields | series=[[London Mathematical Society|London Mathematical Society Student Texts]] | publisher=[[Cambridge University Press]] | year=1986 | isbn=0-521-31525-5 }}
*{{Citation
| last=Cohen
| first=Henri
| author-link=Henri Cohen (number theorist)
| title=Number theory, Volume I: Tools and Diophantine equations
| publisher=Springer
| ___location=New York
| series=[[Graduate Texts in Mathematics]]
| volume=239
| year=2007
| isbn=978-0-387-49922-2
| mr=2312337
| doi=10.1007/978-0-387-49923-9
}}
*{{Citation |last=Robert |first=Alain M. |year=2000 |title=A Course in ''p''-adic Analysis |publisher=Springer |isbn=0-387-98669-3}}
 
==External links==
* {{[https://planetmath.org/PadicExponentialAndPadicLogarithm reference|id=7000|title=p-adic exponential and p-adic logarithm}}]
 
[[Category:Exponentials]]
* {{planetmath reference|id=7000|title=p-adic exponential and p-adic logarithm}}
[[Category:p-adic numbers]]