Content deleted Content added
No edit summary Tags: Reverted Mobile edit Mobile web edit |
No edit summary |
||
(10 intermediate revisions by 10 users not shown) | |||
Line 2:
{{Expand Spanish|Sistema de referencia no inercial|date=September 2022}}
{{Classical mechanics}}
A '''non-inertial reference frame''' (also known as an '''accelerated reference
In [[classical mechanics]] it is often possible to explain the motion of bodies in non-inertial reference frames by introducing additional [[fictitious forces]] (also called inertial forces, [[Pseudo-force|pseudo-forces]],<ref name=Iro>{{cite book |author=Harald Iro |title=A Modern Approach to Classical Mechanics |page=180 |url=https://books.google.com/books?id=-L5ckgdxA5YC&pg=PA179 |isbn=981-238-213-5 |year=2002 |publisher=[[World Scientific]] }}</ref>
In the theory of [[general relativity]], the curvature of [[spacetime]] causes frames to be [[Local reference frame|locally]] inertial, but globally non-inertial. Due to the [[Introduction to the mathematics of general relativity|non-Euclidean geometry of curved space-time]], there are no global inertial reference frames in general relativity. More specifically, the fictitious force which appears in general relativity is the force of [[gravity]].
Line 15:
==Detection of a non-inertial frame: need for fictitious forces==
[[File:Noninertial reference frames.gif|thumb|300x300px|An example of a non-inertial reference frame- a rotating reference frame. The point feels a centrifugal force which needs to be compensated to keep rotating. Otherwise, it does not feel [[Euler force]] as the rotation rate is constant and it does not feel Coriolis force as it is not moving relative to the rotating frame.]]
That a given frame is non-inertial can be detected by its need for fictitious forces to explain observed motions.<ref name=Serway>{{cite book |title=Physics for scientists & engineers |author=Raymond A. Serway |year=1990 |publisher=Saunders College Publishing |edition=3rd |isbn=0-03-031358-9 |page=135 |url=https://books.google.com/books?lr=&as_brr=0&q=%22fictitious+forces+do+not+exist+when+the+motion+is+observed+in+an+inertial+frame.+The+fictitious+forces+are+used+only+in+an+accelerating%22&btnG=Search+Books}}</ref><ref name="ArnoldQuote">{{cite book |title=Mathematical Methods of Classical Mechanics |page=129 |author=V. I. Arnol'd |isbn=978-0-387-96890-2 |year=1989 |url=https://books.google.com/books?as_q=&num=10&btnG=Google+Search&as_epq=additional+terms+called+inertial+forces.+This+allows+us+to+detect+experimentally&as_oq=&as_eq=&as_brr=0&lr=&as_vt=&as_auth=&as_pub=&as_sub=&as_drrb=c&as_miny=&as_maxy=&as_isbn=|publisher=Springer}}</ref><ref name=Rothman>{{cite book |title=Discovering the Natural Laws: The Experimental Basis of Physics |author= Milton A. Rothman |page=[https://archive.org/details/discoveringnatur0000roth/page/23 23] |url=https://archive.org/details/discoveringnatur0000roth
|url-access=registration |quote=reference laws of physics. |isbn=0-486-26178-6 |publisher=Courier Dover Publications |year=1989 }}</ref><ref name=Borowitz>{{cite book |title=A Contemporary View of Elementary Physics |page=138 |publisher=McGraw-Hill |year=1968 |url=https://books.google.com/books?as_q=&num=10&btnG=Google+Search&as_epq=The+effect+of+his+being+in+the+noninertial+frame+is+to+require+the+observer+to&as_oq=&as_eq=&as_brr=0&lr=&as_vt=&as_auth=&as_pub=&as_sub=&as_drrb=c&as_miny=&as_maxy=&as_isbn= |asin= B000GQB02A |author=Sidney Borowitz & Lawrence A. Bornstein }}</ref><ref name=Meirovitch>{{cite book |author=Leonard Meirovitch |page=4 |isbn=0-486-43239-4 |publisher=Courier Dover Publications |year=2004 |edition=Reprint of 1970 |url=https://books.google.com/books?id=GfCil84YTm4C&dq=%22in+accelerated+systems,+we+must%22&pg=PA4 |title =Methods of analytical Dynamics}}</ref> For example, the rotation of the [[Earth]] can be observed using a [[Foucault pendulum]].<ref name=diFrancia>{{cite book |title=The Investigation of the Physical World |author=Giuliano Toraldo di Francia |page=115 |url=https://books.google.com/books?id=cFQ7AAAAIAAJ&dq=laws+physics+%22+form%22&pg=PA46 |isbn=0-521-29925-X |publisher=[[CUP Archive]] |year=1981 }}</ref> The rotation of the Earth seemingly causes the pendulum to change its plane of oscillation because the surroundings of the pendulum move with the Earth. As seen from an Earth-bound (non-inertial) frame of reference, the explanation of this apparent change in orientation requires the introduction of the fictitious [[Coriolis effect|Coriolis force]].
Line 22 ⟶ 23:
In this connection, it may be noted that a change in coordinate system, for example, from Cartesian to polar, if implemented without any change in relative motion, does not cause the appearance of fictitious forces, although the form of the laws of motion varies from one type of curvilinear coordinate system to another.
==Relativistic point of view==
Line 34 ⟶ 29:
===Frames and flat spacetime===
{{See|Proper reference frame (flat spacetime)}}
If a region of spacetime is declared to be [[Euclidean space|Euclidean]], and effectively free from obvious gravitational fields, then if an accelerated coordinate system is overlaid onto the same region, it can be said that a ''uniform fictitious field'' exists in the accelerated frame (we reserve the word gravitational for the case in which a mass is involved). An object accelerated to be stationary in the accelerated frame will "feel" the presence of the field, and they will also be able to see environmental matter with inertial states of motion (stars, galaxies, etc.) to be apparently falling "downwards" in the field
In frame-based descriptions, this supposed field can be made to appear or disappear by switching between "accelerated" and "inertial" coordinate systems.
|