Content deleted Content added
Tags: Mobile edit Mobile app edit Android app edit |
some dingus tried to be funnay Tags: Manual revert Mobile edit Mobile web edit |
||
(11 intermediate revisions by 8 users not shown) | |||
Line 1:
{{Short description|Type of calculus problem}}{{Inline
In [[multivariable calculus]], an '''initial value problem'''{{efn|Also called a '''[[Cauchy problem]]''' by some authors.{{cn|date=December 2018}}}} ('''IVP''') is an [[ordinary differential equation]] together with an [[initial condition]] which specifies the value of the unknown [[function (mathematics)|function]] at a given point in the [[___domain of a function|___domain]]. Modeling a system in [[physics]] or other sciences frequently amounts to solving an initial value problem. In that context, the differential initial value is an equation which specifies how the system [[time evolution|evolves with time]] given the initial conditions of the problem.
Line 71:
&= 6t+5.
\end{align} </math>
:
'''Third example'''
The solution of
<math>y'=y^{\frac 2 3},\qquad y(0)=0
</math>
<math>\int \frac{y'}{y^{\frac 2 3}}\,dt = \int y^{-\frac 2 3}\,dy =\int 1\,dt</math>
<math>3 (y(t))^{\frac 1 3}=t+B
</math>
Applying initial conditions we get <math> B=0 </math>, hence the solution:
<math>y(t)= \frac {t^3} {27}
</math>.
However, the following function is also a solution of the initial value problem:
<math>f(t) = \left\{ \begin{array}{lll} \frac{(t-t_1)^3}{27} & \text{if} & t \leq t_1 \\ 0 & \text{if} & t_1 \leq x \leq t_2 \\ \frac{(t-t_2)^3}{27} & \text{if} & t_2 \leq t \\ \end{array} \right.</math>
The function is differentiable everywhere and continuous, while satisfying the differential equation as well as the initial value problem. Thus, this is an example of such a problem with infinite number of solutions.
==Notes==
Line 79 ⟶ 104:
* [[Constant of integration]]
* [[Integral curve]]
* [[Norton's dome]]
== References ==
Line 84 ⟶ 110:
* {{cite book |author1=Coddington, Earl A. |author2=Levinson, Norman | title=Theory of ordinary differential equations |url=https://archive.org/details/theoryofordinary00codd |url-access=registration | publisher=McGraw-Hill Book Company, Inc. | ___location=New York-Toronto-London | year=1955 }}
* {{cite book | author=[[Morris W. Hirsch|Hirsch, Morris W.]] and [[Stephen Smale|Smale, Stephen]] | title=Differential equations, dynamical systems, and linear algebra | publisher=Academic Press | ___location=New York-London | year=1974 }}
* {{cite journal | last=Okamura | first=Hirosi | title=Condition nécessaire et suffisante remplie par les équations différentielles ordinaires sans points de Peano | journal=Mem. Coll. Sci. Univ. Kyoto Ser. A
* {{cite book |author1=Agarwal, Ravi P. |author2=Lakshmikantham, V. | title=Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations | url=https://books.google.com/books?id=q4OkW4H8BCUC | series=Series in real analysis | volume=6 | year=1993 | publisher=World Scientific | isbn=978-981-02-1357-2}}
* {{cite book |author1=Polyanin, Andrei D. |author2=Zaitsev, Valentin F. | title=Handbook of exact solutions for ordinary differential equations | edition=2nd | publisher=Chapman &
* {{cite book | last=Robinson | first=James C. | title=Infinite-dimensional dynamical systems: An introduction to dissipative parabolic PDEs and the theory of global attractors | publisher=Cambridge University Press | ___location=Cambridge | year=2001 | isbn=0-521-63204-8 }}
{{refend}}
Line 94 ⟶ 120:
[[Category:Boundary conditions]]
[[it:Problema ai valori iniziali]]
|