Content deleted Content added
Replace bare "citation needed" text in brackets with properly formatted invocation of Template:Citation needed with date. (via WP:JWB) |
|||
(26 intermediate revisions by 15 users not shown) | |||
Line 4:
{{quantum field theory}}
In [[theoretical physics]], specifically [[quantum field theory]], a '''beta function''' or '''Gell-Mann–Low function''', ''β(g)'', encodes the dependence of a [[Coupling constant|coupling parameter]], ''g'', on the [[energy scale]],
It is defined by the '''Gell-Mann–Low equation'''<ref>{{Cite book |last=Tsvelik |first=Alexei M. |url=https://www.google.fr/books/edition/Quantum_Field_Theory_in_Condensed_Matter/78t7iDTth2YC?hl=en&gbpv=1&dq=%22Gell-Mann-Low+equation%22+renormalization&pg=PA61&printsec=frontcover |title=Quantum Field Theory in Condensed Matter Physics |date=2007-01-18 |publisher=Cambridge University Press |isbn=978-0-521-52980-8 |language=en}}</ref> or '''renormalization group equation,''' given by
:: <math>\beta(g) = \mu \frac{\partial g}{\partial \mu} = \frac{\partial g}{\partial \
and, because of the underlying
This dependence on the energy scale thus specified is known as the [[Coupling constant#Running coupling|running]] of the coupling parameter, a fundamental
feature of scale-dependence in quantum field theory, and its explicit computation is achievable through a variety of mathematical techniques. The concept of beta function was first introduced by [[Ernst Stueckelberg]] and [[André Petermann]] in 1953,<ref>{{cite journal |author1-link=Ernst Stueckelberg |last1=Stueckelberg |first1=E.C.G. |author2-link=André Petermann |first2=A. |last2=Petermann |year=1953 |url=https://www.e-periodica.ch/cntmng?pid=hpa-001:1953:26::894 |title=La renormalisation des constants dans la théorie de quanta |journal=Helv. Phys. Acta |volume=26 |pages=499–520 |language=FR}}</ref> and independently postulated by [[Murray Gell-Mann]] and [[Francis E. Low]] in 1954.<ref>{{Cite journal |last=Fraser |first=James D. |date=2021-10-01 |title=The twin origins of renormalization group concepts |url=https://www.sciencedirect.com/science/article/pii/S0039368121001126 |journal=Studies in History and Philosophy of Science Part A |volume=89 |pages=114–128 |doi=10.1016/j.shpsa.2021.08.002 |issn=0039-3681}}</ref>
== History ==
{{Excerpt|Renormalization group#Beginnings}}
==Scale invariance==
If the beta functions of a [[quantum field theory]] (QFT) vanish, usually at particular values of the coupling parameters, then the theory is said to be [[Scale invariance|scale-invariant]]. Almost all scale-invariant QFTs are also [[Conformal symmetry|conformally invariant]]. The study of such theories is [[conformal field theory]].
The coupling parameters of a quantum field theory can run even if the corresponding [[classical field theory]] is scale-invariant. In this case, the non-zero beta function tells us that the classical scale invariance is [[Conformal anomaly|anomalous]].
Line 27 ⟶ 30:
*<math>\beta(e)=\frac{e^3}{12\pi^2}~,</math>
or, equivalently,
*<math>\beta(\alpha)=\frac{2\alpha^2}{3
written in terms of the [[Fine-structure constant#In non-SI units|fine structure constant]] in natural units, {{math|''α'' {{=}} ''e''<sup>2</sup>/4π}}.<ref>{{cite book |last1=Srednicki |first1=Mark Allen |title=Quantum field theory |date=2017 |publisher=Cambridge Univ. Press |___location=Cambridge |isbn=978-0-521-86449-7 |page=446 |edition=13th printing}}</ref>
This beta function tells us that the coupling increases with increasing energy scale, and QED becomes strongly coupled at high energy. In fact, the coupling apparently becomes infinite at some finite energy, resulting in a [[Landau pole]]. However, one cannot expect the perturbative beta function to give accurate results at strong coupling, and so it is likely that the Landau pole is an artifact of applying perturbation theory in a situation where it is no longer valid.
Line 41 ⟶ 44:
:<math>\beta(\alpha_s)=-\left(11- \frac{n_s}{6}-\frac{2n_f}{3}\right)\frac{\alpha_s^2}{2\pi}~,</math>
written in terms of
===SU(''N'') Non-Abelian gauge theory===
While the (
:<math>\beta(g)=-\left(\frac{11}{3}C_2(G)-\frac{1}{3}n_sT(R_s)-\frac{4}{3}n_f T(R_f)\right)\frac{g^3}{16\pi^2}~,</math>
where <math>C_2(G)</math> is the [[Casimir invariant|quadratic Casimir]] of <math>G</math> and <math>T(R)</math> is another Casimir invariant defined by <math>Tr (T^a_RT^b_R) = T(R)\delta^{ab}</math> for generators <math>T^{a,b}_R</math> of the Lie algebra in the representation ''R''. (For [[Weyl]] or [[Majorana fermions]], replace <math>4/3</math> by <math>2/3</math>, and for real scalars, replace <math>1/3</math> by <math>1/6</math>.) For gauge fields (''i.e.'' gluons), necessarily in the [[Adjoint representation of a Lie group|adjoint]] of <math>G</math>, <math>C_2(G) = N_c</math>; for fermions in the [[Fundamental representation|fundamental]] (or anti-fundamental) representation of <math>G</math>, <math>T(R) = 1/2</math>. Then for QCD, with <math>N_c = 3</math>, the above equation reduces to that listed for the quantum chromodynamics beta function.
This famous result was derived nearly simultaneously in 1973 by [[
{{cite journal
| author=H.David Politzer
Line 57 ⟶ 60:
| title=Reliable Perturbative Results for Strong Interactions?
| journal=Phys. Rev. Lett.
| volume=30 | issue=26
| pages=1346–1349 | doi=10.1103/PhysRevLett.30.1346
| url=http://inspirehep.net/record/81351?ln=en|bibcode = 1973PhRvL..30.1346P | doi-access=free
}}</ref> [[David
{{cite journal
| author=D.J. Gross and F. Wilczek
Line 66 ⟶ 70:
| title=Asymptotically Free Gauge Theories. 1
| journal=Phys. Rev. D
| volume=8 | issue=10
| pages=3633–3652 | doi=10.1103/PhysRevD.8.3633
| url=http://inspirehep.net/record/81404 |bibcode = 1973PhRvD...8.3633G | doi-access=free
}}.</ref>
Unbeknownst to these authors, [[Gerard
{{cite journal
| author=G. 't Hooft
Line 76 ⟶ 81:
| title= When was Asymptotic Freedom discovered?
| journal=Nucl. Phys. B Proc. Suppl.
| volume=74 | issue=1
| pages=413–425 | doi=10.1016/S0920-5632(99)00207-8
|arxiv = hep-th/9808154 |bibcode = 1999NuPhS..74..413T | s2cid=17360560
}}</ref> ===Standard Model
{{Main|Infrared fixed point}}
In the [[Standard Model]], quarks and leptons have
<math>\mu \frac{\partial}{\partial\mu} y \approx \frac{y}{16\pi^2}\left(\frac{9}{2}y^2 - 8 g_3^2\right)</math>,
where <math>g_3</math> is the [[color charge|color]] [[gauge theory|gauge]] coupling (which is a function of
The Yukawa couplings of the up, down, charm, strange and bottom quarks, are small at the extremely high energy scale of [[Grand Unified Theory|grand unification]], <math> \mu \approx 10^{15} </math> GeV. Therefore, the <math>y^2</math> term can be neglected in the above equation. Solving, we then find that <math>y</math> is increased slightly at the low energy scales at which the quark masses are generated by the Higgs, <math> \mu \approx 100 </math> GeV.▼
▲The Yukawa couplings of the up, down, charm, strange and bottom quarks, are small at the extremely high energy scale of [[Grand Unified Theory|grand unification]], <math> \mu \approx 10^{15} </math> GeV.
On the other hand, solutions to this equation for large initial values <math>y</math> cause the ''rhs'' to quickly approach smaller values as we descend in energy scale. The above equation then locks <math>y</math> to the QCD coupling <math>g_3</math>. This is known as the (infrared) quasi-fixed point of the renormalization group equation for the Yukawa coupling.<ref>{{cite journal|last1=Pendleton|first1=B.|last2=Ross|first2=G.G.|title=Mass and Mixing Angle Predictions from Infrared Fixed points|journal=Phys. Lett.|date=1981|volume=B98|page=291|doi=10.1016/0370-2693(81)90017-4|bibcode = 1981PhLB...98..291P }}</ref><ref>{{cite journal|last1=Hill|first1=C.T.|title=Quark and Lepton masses from Renormalization group fixed points|journal=Phys. Rev.|date=1981|volume=D24|page=691|doi=10.1103/PhysRevD.24.691|bibcode = 1981PhRvD..24..691H }}</ref> No matter what the initial starting value of the coupling is, if it is sufficiently large it will reach this quasi-fixed point value, and the corresponding quark mass is predicted.▼
▲On the other hand, solutions to this equation for large initial values <math>y</math> cause the ''rhs'' to quickly approach smaller values as we descend in energy scale. The above equation then locks <math>y</math> to the QCD coupling <math>g_3</math>. This is known as the (infrared) quasi-fixed point of the renormalization group equation for the Yukawa coupling.<ref>{{cite journal|last1=Pendleton|first1=B.|last2=Ross|first2=G.G.|title=Mass and Mixing Angle Predictions from Infrared Fixed points|journal=Phys. Lett.|date=1981|volume=B98|issue=4 |page=291|doi=10.1016/0370-2693(81)90017-4|bibcode = 1981PhLB...98..291P }}</ref><ref>{{cite journal|last1=Hill|first1=C.T.|title=Quark and Lepton masses from Renormalization group fixed points|journal=Phys. Rev.|date=1981|volume=D24|issue=3 |page=691|doi=10.1103/PhysRevD.24.691|bibcode = 1981PhRvD..24..691H }}</ref> No matter what the initial starting value of the coupling is, if it is sufficiently large it will reach this quasi-fixed point value, and the corresponding quark mass is predicted.
===Minimal
{{Main|Minimal Supersymmetric Standard Model#Gauge-Coupling Unification}}
Renomalization group studies in the
==See also==
Line 105 ⟶ 110:
==References==
{{notelist}}
{{Reflist}}
Line 112 ⟶ 118:
* Zinn-Justin, Jean; ''Quantum Field Theory and Critical Phenomena,'' Oxford University Press (2002). Emphasis on the renormalization group and related topics.
{{Authority control}}
[[Category:Renormalization group]]
[[Category:Scaling symmetries]]
|