Domain decomposition methods: Difference between revisions

Content deleted Content added
External links: Remedy -- by use of an " archive-url" field of a "cite web" template instance -- a "dead link" that was appearing in the entry for << "[http://www.___domain-decomposition.com Domain Decomposition - Numerical Simulations page]" >>.
No edit summary
 
(One intermediate revision by one other user not shown)
Line 14:
 
==Example 1: 1D Linear BVP==
<math display="block">\begin{cases}
<math> u''(x)-u(x)=0 </math><br>
<math> u''(0x) =0, u(1x)=1, </math><br>\\
u(0) = 0, \\
The exact solution is:<br>
u(1) = 1.
<math> u(x)=\frac{e^x-e^{-x}}{e^{1}-e^{-1}} </math><br>
\end{cases} </math>
Subdivide the ___domain into two subdomains, one from <math>\left[0,\frac{1}{2}\right]</math> and another from <math>\left[\frac{1}{2},1\right]</math>. In the left subdomain define the interpolating function <math> v_1(x) </math> and in the right define <math> v_2 (x) </math>. At the interface between these two subdomains the following interface conditions shall be imposed:<br>
The exact solution is:<br>
<math> v_1\left(\frac{1}{2}\right)=v_2 \left(\frac{1}{2}\right) </math><br>
<math display="block"> v_1'\leftu(x)=\frac{1e^x-e^{-x}{2}\right)=v_2'\left(\frac{e^{1}-e^{2-1}\right)} </math><br>
Subdivide the ___domain into two subdomains, one from <math>\left[0,\fractfrac{1}{2}\right]</math> and another from <math>\left[\fractfrac{1}{2},1\right]</math>. In the left subdomain define the interpolating function <math> v_1(x) </math> and in the right define <math> v_2 (x) </math>. At the interface between these two subdomains the following interface conditions shall be imposed:<br>
<math display="block">\begin{align}
<math> v_1{\left(\frac{1}{2}\right)} &=v_2 v_2{\left(\frac{1}{2}\right)} </math><br>\\
v_1'{\left(\frac{1}{2}\right)} &= v_2'{\left(\frac{1}{2}\right)}
\end{align}</math>
Let the interpolating functions be defined as:<br>
<math display="block">\begin{align}
<math> v_1 (x) =\sum_{n=0}^{N} u_{n} T_n (y_1(x)) </math><br>
<math> v_2 v_1(x) &= \sum_{n=0}^{N} u_{n+N} T_n (y_2y_1(x)) </math><br>\\
<math> v_1 v_2(x) &= \sum_{n=0}^{N} u_{n+N} T_n (y_1y_2(x)) </math><br>\\
<math> y_1(x)=4x-1 </math><br>
<math> y_2 y_1(x) &= 4x-31 </math><br>\\
y_2(x) &= 4x-3
Where <math> T_n (y) </math> is the nth cardinal function of the chebyshev polynomials of the first kind with input argument y.<br>
\end{align} </math>
If N=4 then the following approximation is obtained by this scheme:<br>
Where <math> T_n (y) </math> is the nth cardinal function of the chebyshevChebyshev polynomials of the first kind with input argument y.<br>
<math> u_1 =0.06236 </math><br>
 
<math> u_2 =0.21495 </math><br>
If ''N''=4 then the following approximation is obtained by this scheme:<br>
<math> u_3 =0.37428 </math><br>
<math display="block">\begin{align}
<math> u_4 =0.44341 </math><br>
u_1 &= 0.06236, &
<math> u_5 =0.51492 </math><br>
u_2 &= 0.21495, \\
<math> u_6 =0.69972 </math><br>
u_3 &= 0.37428, &
<math> u_7 =0.90645 </math><br>
u_4 &= 0.44341, \\
This was obtained with the following MATLAB code. <br>
u_5 &= 0.51492, &
u_6 &= 0.69972, \\
u_7 &= 0.90645.
\end{align}</math>
This was obtained with the following MATLAB code. <br>
<syntaxhighlight lang="matlab">
clear all
Line 59 ⟶ 69:
 
==See also==
* [[Multigrid method]]
 
== Related Books ==
{{Numerical PDE}}
{{refbegin}}
* Barry Smith, Petter Bjørstad, and William Gropp: ''Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations'', Cambridge Univ. Press, ISBN 0-521-49589-X (1996).
{{refend}}
 
== External links ==
Line 74 ⟶ 87:
| archive-date = 2021-01-26
}}
 
{{Numerical PDE}}
 
{{DEFAULTSORT:Domain Decomposition Methods}}