Gauss–Legendre algorithm: Difference between revisions

Content deleted Content added
approximations were _not_ up to and including first incorrect digit; now they are
No edit summary
 
(One intermediate revision by one other user not shown)
Line 26:
:<math>3.1415926535897932382\dots</math>
:<math>3.14159265358979323846264338327950288419711\dots</math>
:<math>3.141592653589793238462643383279502884197169399375105820974944592307816406286208998625\dots</math>
:<math>3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986256\dots</math>
The algorithm has [[quadratic convergence]], which essentially means that the number of correct digits doubles with each [[iteration]] of the algorithm.
 
Line 112:
=== Elementary proof with integral calculus ===
 
The Gauss-Legendre algorithm can be proven to give results converging to π<math>\pi</math> using only integral calculus. This is done here<ref>{{citation|title=Recent Calculations of π: The Gauss-Salamin Algorithm|last1=Lord|first1=Nick|doi=10.2307/3619132|year=1992|journal=The Mathematical Gazette|volume=76|issue=476|pages=231–242|jstor=3619132|s2cid=125865215 }}</ref> and here.<ref>{{citation|title=Easy Proof of Three Recursive π-Algorithms|last1=Milla|first1=Lorenz|arxiv=1907.04110|year=2019}}</ref>
 
== See also ==