Content deleted Content added
No edit summary |
|||
(92 intermediate revisions by 59 users not shown) | |||
Line 1:
{{Short description|Quickly converging computation of π}}
The '''Gauss–Legendre algorithm''' is an [[algorithm]] to compute the digits of [[Pi|
The method is based on the individual work of [[Carl Friedrich Gauss]] (1777–1855) and [[Adrien-Marie Legendre]] (1752–1833) combined with modern algorithms for multiplication and [[square root]]s. It repeatedly replaces two numbers by their [[arithmetic mean|arithmetic]] and [[geometric mean]], in order to approximate their [[arithmetic-geometric mean]].
The version presented below is also known as the '''Gauss–Euler''', '''Brent–Salamin''' (or '''Salamin–Brent''') '''algorithm''';<ref>[[Richard Brent (scientist)|Brent, Richard]], ''Old and New Algorithms for pi'', Letters to the Editor, Notices of the AMS 60(1), p. 7</ref> it was independently discovered in 1975 by [[Richard Brent (scientist)
== Algorithm ==
# Initial value setting: <math display="block">a_0 = 1\qquad b_0 = \frac{1}{\sqrt{2}}\qquad p_0 = 1\qquad t_0 = \frac{1}{4}
\\
\\
\\
\end{align}
</math>
# {{pi}} is then approximated as: <math display="block">\pi \approx \frac{(a_{n+1}+b_{n+1})^2}{4t_{n+1}}.</math>
The first three iterations give (approximations given up to and including the first incorrect digit):
▲:<math>a_0 = 1\qquad b_0 = \frac{1}{\sqrt{2}}\qquad t_0 = \frac{1}{4}\qquad p_0 = 1\!</math>
▲2. Repeat the following instructions until the difference of <math>a_n\!</math> and <math>b_n\!</math> is within the desired accuracy:
:<math>3.1415926535897932382\dots</math>
:<math>3.14159265358979323846264338327950288419711\dots</math>
:<math>3.141592653589793238462643383279502884197169399375105820974944592307816406286208998625\dots</math>
The algorithm has
== Mathematical background ==▼
▲:<math>a_{n+1} = \frac{a_n + b_n}{2},\!</math>
▲:<math>b_{n+1} = \sqrt{a_n b_n}\!</math>,
▲:<math>t_{n+1} = t_n - p_n(a_n - a_{n+1})^2,\!</math>
▲:<math>p_{n+1} = 2p_n.\!</math>
The [[arithmetic–geometric mean]] of two numbers, a<sub>0</sub> and b<sub>0</sub>, is found by calculating the limit of the sequences
:<math>\
b_{n+1} & = \sqrt{a_n b_n},
\end{align}
</math>
which both converge to the same limit.<br />
If <math>a_0=1
:<math>
▲:<math>3.14159264\dots\!</math>
▲:<math>3.14159265358979\dots\!</math>
▲The algorithm has second-order convergent nature, which essentially means that the number of correct digits doubles with each step of the algorithm.
▲==Mathematical background==
where <math>E(k)
▲===Limits of the arithmetic-geometric mean===
▲If <math>a_0=1\!</math> and <math>b_0=\cos\varphi\!</math> then the limit is <math>{\pi \over 2K(\sin\varphi)}\!</math> where <math>K(k)\!</math> is the [[Elliptic integral#Complete elliptic integral of the first kind|complete elliptic integral of the first kind]]
▲If <math>c_0 = \sin\varphi\!</math>, <math>c_{i+1} = a_i - a_{i+1}\!</math>. then
▲:<math>\sum_{i=0}^\infty 2^{i-1} c_i^2 = 1 - {E(\sin\varphi)\over K(\sin\varphi)}\!</math>
▲where <math>E(k)\!</math> be the [[Elliptic integral#Complete elliptic integral of the second kind|complete elliptic integral of the second kind]]:
▲:<math>E(k) = \int_0^{\pi/2}\sqrt {1-k^2 \sin^2\theta}\, d\theta.\!</math>
▲Gauss knew of both of these results.<ref name="brent">{{Citation
| last=Brent
| first=Richard
| author-link=Richard Brent (scientist)
| publication-date=
| year=1975
| title=Multiple-precision zero-finding methods and the complexity of elementary function evaluation
Line 68 ⟶ 74:
| doi=
| oclc=
| accessdate=
| archive-date=23 July 2008
}}</ref>▼
| archive-url=https://web.archive.org/web/20080723170157/http://wwwmaths.anu.edu.au/~brent/pub/pub028.html
<ref name="salamin1">Salamin, Eugene ''Computation of pi'', Charles Stark Draper Laboratory ISS memo 74–19, 30 January, 1974, Cambridge, Massachusetts</ref>▼
| url-status=dead
▲ }}</ref>
▲<ref name="salamin1">[[Eugene Salamin (mathematician)|Salamin, Eugene]], ''Computation of pi'', Charles Stark Draper Laboratory ISS memo 74–19, 30 January
<ref name="salamin2">{{Citation
| last=Salamin
| first=Eugene
| author-link=Eugene Salamin (mathematician)
| publication-date=
| year=1976
| title=Computation of pi Using
| periodical=Mathematics of Computation
| series=
Line 90 ⟶ 98:
| pages=565–570
| url=
| issn=0025
| doi=10.2307/2005327
| jstor=2005327
| oclc=
| accessdate=
}}</ref>
=== Legendre’s identity ===
Legendre proved the following identity:
:<math display="block">K(\
for all <math>\theta</math>.<ref name="brent" />
=== Elementary proof with integral calculus ===
▲:<math>K(\sin \varphi) E(\sin \theta ) + K(\sin \theta ) E(\sin \varphi) - K(\sin \varphi) K(\sin \theta) = {1 \over 2}\pi\!</math><ref name="brent" />
The Gauss-Legendre algorithm can be proven to give results converging to <math>\pi</math> using only integral calculus. This is done here<ref>{{citation|title=Recent Calculations of π: The Gauss-Salamin Algorithm|last1=Lord|first1=Nick|doi=10.2307/3619132|year=1992|journal=The Mathematical Gazette|volume=76|issue=476|pages=231–242|jstor=3619132|s2cid=125865215 }}</ref> and here.<ref>{{citation|title=Easy Proof of Three Recursive π-Algorithms|last1=Milla|first1=Lorenz|arxiv=1907.04110|year=2019}}</ref>
== See also ==
* [[Numerical approximations of π|Numerical approximations of {{pi}}]]
== References ==
{{reflist}}
{{DEFAULTSORT:Gauss-Legendre algorithm}}
[[Category:Pi algorithms]]
|