Gauss–Legendre algorithm: Difference between revisions

Content deleted Content added
Algorithm: It's not immediately obvious where so many digits come from since the following line says number of correct digits doubles with each step.
No edit summary
 
(77 intermediate revisions by 48 users not shown)
Line 1:
{{Short description|Quickly converging computation of π}}
The '''Gauss–Legendre algorithm''' is an [[algorithm]] to compute the digits of [[Pi|π{{pi}}]]. It is notable for being rapidly convergent, with only 25 iterations producing 45 million correct digits of π {{pi}}. However, theit drawbackhas issome thatdrawbacks (for example, it is memory[[Random-access_memory|computer memory]]-intensive) and ittherefore isall thereforerecord-breaking sometimescalculations notfor many years have used overother methods, almost always the [[Machin-likeChudnovsky algorithm]]. For details, see [[chronology of computation of π|Chronology of computation of formulas{{pi}}]].
 
The method is based on the individual work of [[Carl Friedrich Gauss]] (1777–1855) and [[Adrien-Marie Legendre]] (1752–1833) combined with modern algorithms for multiplication and [[square root]]s. It repeatedly replaces two numbers by their [[arithmetic mean|arithmetic]] and [[geometric mean]], in order to approximate their [[arithmetic-geometric mean]].
 
The version presented below is also known as the '''Gauss–Euler''', '''Brent–Salamin''' (or '''Salamin–Brent''') '''algorithm''';<ref>[[Richard Brent (scientist)|Brent, Richard]], ''Old and New Algorithms for pi'', Letters to the Editor, Notices of the AMS 60(1), p. 7</ref> it was independently discovered in 1975 by [[Richard Brent (scientist)|Richard Brent]] and [[Eugene Salamin (mathematician)|Eugene Salamin]]. It was used to compute the first 206,158,430,000 decimal digits of π{{pi}} on September 18 to 20, 1999, and the results were checked with [[Borwein's algorithm]].
 
== Algorithm ==
# Initial value setting: <math display="block">a_0 = 1\qquad b_0 = \frac{1}{\sqrt{2}}\qquad p_0 = 1\qquad t_0 = \frac{1}{4}\qquad p_0 = 1\!.</math>
 
2.# Repeat the following instructions until the difference ofbetween <math>a_n\!a_{n+1}</math> and <math>b_n\!b_{n+1}</math> is within the desired accuracy: <math display="block"> \begin{align}
1. Initial value setting:
:<math> \begin{align} a_{n+1} & = \frac{a_n + b_n}{2}, \\
 
p_{n+1} & = 2p_n. \\
:<math>a_0 = 1\qquad b_0 = \frac{1}{\sqrt{2}}\qquad t_0 = \frac{1}{4}\qquad p_0 = 1\!</math>
b_{n+1} & = \sqrt{a_n b_n}, \\
 
\\
2. Repeat the following instructions until the difference of <math>a_n\!</math> and <math>b_n\!</math> is within the desired accuracy:
p_{n+1} & = 2p_n, \\
 
\\
:<math> \begin{align} a_{n+1} & = \frac{a_n + b_n}{2}, \\
b_t_{n+1} & = \sqrtt_n - p_n(a_{a_n b_nn+1}-a_{n},)^2. \\
t_{n+1} & = t_n - p_n(a_n - a_{n+1})^2, \\
p_{n+1} & = 2p_n.
\end{align}
</math>
# {{pi}} is then approximated as: <math display="block">\pi \approx \frac{(a_{n+1}+b_{n+1})^2}{4t_{n+1}}.</math>
 
3. π is then approximated as:
 
:<math>\pi \approx \frac{(a_n+b_n)^2}{4t_n}.\!</math>
 
The first three iterations give (approximations given up to and including the first incorrect digit):
 
:<math>3.140\dots\!</math>
:<math>3.14159264\dots\!</math>
:<math>3.1415926535897932382\dots\!</math>
:<math>3.14159265358979323846264338327950288419711\dots</math>
 
:<math>3.141592653589793238462643383279502884197169399375105820974944592307816406286208998625\dots</math>
The algorithm has second-order[[quadratic convergent natureconvergence]], which essentially means that the number of correct digits doubles with each step[[iteration]] of the algorithm.
 
== Mathematical background ==
 
=== Limits of the arithmetic-geometricarithmetic–geometric mean ===
 
The [[arithmetic-geometricarithmetic–geometric mean]] of two numbers, a<sub>0</sub> and b<sub>0</sub>, is found by calculating the limit of the sequences
 
:<math>\begin{align} a_{n+1} & = \frac{a_n+b_n}{2}, \\[6pt]
b_{n+1} & = \sqrt{a_n b_n},
\end{align}
</math>
 
which both converge to the same limit.<br />
If <math>a_0=1\!</math> and <math>b_0=\cos\varphi\!</math> then the limit is <math display="inline">{\pi \over 2K(\sin\varphi)}\!</math> where <math>K(k)\!</math> is the [[Elliptic integral#Complete elliptic integral of the first kind|complete elliptic integral of the first kind]]
 
:<math>K(k) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}}.\!</math>
 
If <math>c_0 = \sin\varphi\!</math>, <math>c_{i+1} = a_i - a_{i+1}\!</math>., then
 
:<math>\sum_{i=0}^\infty 2^{i-1} c_i^2 = 1 - {E(\sin\varphi)\over K(\sin\varphi)}\!</math>
 
where <math>E(k)\!</math> is the [[Elliptic integral#Complete elliptic integral of the second kind|complete elliptic integral of the second kind]]:
 
:<math>E(k) = \int_0^{\pi/2}\sqrt {1-k^2 \sin^2\theta}\,; d\theta.\!</math>
 
Gauss knew of boththese of thesetwo results.<ref name="brent">{{Citation
| last=Brent
| first=Richard
| author-link=Richard Brent (scientist)
| publication-date=
| date=
| year=1975
| title=Multiple-precision zero-finding methods and the complexity of elementary function evaluation
Line 79 ⟶ 75:
| oclc=
| accessdate=8 September 2007
| archive-date=23 July 2008
}}</ref>
| archive-url=https://web.archive.org/web/20080723170157/http://wwwmaths.anu.edu.au/~brent/pub/pub028.html
<ref name="salamin1">[[Eugene Salamin (mathematician)|Salamin, Eugene]]. ''Computation of pi'', Charles Stark Draper Laboratory ISS memo 74–19, 30 January, 1974, Cambridge, Massachusetts</ref>
| url-status=dead
}}</ref>
<ref name="salamin1">[[Eugene Salamin (mathematician)|Salamin, Eugene]]., ''Computation of pi'', Charles Stark Draper Laboratory ISS memo 74–19, 30 January, 1974, Cambridge, Massachusetts</ref>
<ref name="salamin2">{{Citation
| last=Salamin
Line 86 ⟶ 85:
| author-link=Eugene Salamin (mathematician)
| publication-date=
| date=1976
| year=1976
| title=Computation of pi Using Arithmetic-GeometricArithmetic–Geometric Mean
| periodical=Mathematics of Computation
| series=
Line 100 ⟶ 98:
| pages=565–570
| url=
| issn=0025--5718
| doi=10.2307/2005327
| jstor=2005327
| oclc=
| accessdate=
Line 107 ⟶ 106:
 
=== Legendre’s identity ===
Legendre proved the following identity:
:<math display="block">K(\sincos \varphitheta) E(\sin \theta ) + K(\sin \theta ) E(\sincos \varphitheta) - K(\sincos \varphitheta) K(\sin \theta) = {1\pi \over 2}\pi\!,</math><ref name="brent" />
for all <math>\theta</math>.<ref name="brent" />
 
=== Elementary proof with integral calculus ===
For <math>\varphi\!</math> and <math>\theta\!</math> such that <math>\varphi+\theta={1 \over 2}\pi\!</math> Legendre proved the identity:
:<math>K(\sin \varphi) E(\sin \theta ) + K(\sin \theta ) E(\sin \varphi) - K(\sin \varphi) K(\sin \theta) = {1 \over 2}\pi\!</math><ref name="brent" />
 
The Gauss-Legendre algorithm can be proven to give results converging to <math>\pi</math> using only integral calculus. This is done here<ref>{{citation|title=Recent Calculations of π: The Gauss-Salamin Algorithm|last1=Lord|first1=Nick|doi=10.2307/3619132|year=1992|journal=The Mathematical Gazette|volume=76|issue=476|pages=231–242|jstor=3619132|s2cid=125865215 }}</ref> and here.<ref>{{citation|title=Easy Proof of Three Recursive π-Algorithms|last1=Milla|first1=Lorenz|arxiv=1907.04110|year=2019}}</ref>
=== Gauss–Legendre method ===
 
The values <math>\varphi=\theta={\pi\over 4}\!</math> can be substituted into Legendre’s identity and the approximations to K, E can be found by terms in the sequences for the arithmetic geometric mean with <math>a_0=1\!</math> and <math>b_0=\sin{\pi \over 4}=\frac{1}{\sqrt{2}}\!</math>.<ref name="brent" />
 
== See also ==
* [[Numerical approximations of π|Numerical approximations of {{pi}}]]
 
== References ==
{{reflist}}
 
{{DEFAULTSORT:Gauss-Legendre algorithm}}
[[Category:Pi algorithms]]
 
[[es:Algoritmo de Gauss-Legendre]]
[[it:Algoritmo di Gauss-Legendre]]
[[he:אלגוריתם גאוס-לז'נדר]]
[[nl:Algoritme van Gauss-Legendre]]
[[ja:ガウス=ルジャンドルのアルゴリズム]]
[[tr:Gauss-Legendre Algoritması]]
[[zh:高斯-勒让德算法]]