Content deleted Content added
{{distinguish|Alternant matrix}} |
Citation bot (talk | contribs) Added bibcode. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Matrices (mathematics) | #UCB_Category 11/234 |
||
(45 intermediate revisions by 32 users not shown) | |||
Line 1:
{{distinguish|Alternant matrix}}
{{Image frame|width=340|align=right|caption=The seven alternating sign matrices of size 3
|content=<math>\begin{matrix}
\begin{bmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{bmatrix}
\qquad
\begin{bmatrix}
1 & 0 & 0\\
0 & 0 & 1\\
0 & 1 & 0
\end{bmatrix}
\\
\begin{bmatrix}
0 & 1 & 0\\
1 & 0 & 0\\
0 & 0 & 1
\end{bmatrix}
\qquad
\begin{bmatrix}
0 & 1 & 0\\
1 & -1 & 1\\
0 & 1 & 0
\end{bmatrix}
\qquad
\begin{bmatrix}
0 & 1 & 0\\
0 & 0 & 1\\
1 & 0 & 0
\end{bmatrix}
\\
\begin{bmatrix}
0 & 0 & 1\\
1 & 0 & 0\\
0 & 1 & 0
\end{bmatrix}
\qquad
\begin{bmatrix}
0 & 0 & 1\\
0 & 1 & 0\\
1 & 0 & 0
\end{bmatrix}
\end{matrix}</math>}}
In [[mathematics]], an '''alternating sign matrix''' is a [[square matrix]] of 0s, 1s, and
| last = Hone | first = Andrew N. W.
| doi = 10.1098/rsta.2006.1887
| issue = 1849
| journal = Philosophical Transactions of the Royal Society of London
| mr = 2317901
| pages = 3183–3198
| title = Dodgson condensation, alternating signs and square ice
| volume = 364
| year = 2006| bibcode = 2006RSPTA.364.3183H
}}</ref> They are also closely related to the [[six-vertex model]] with ___domain wall boundary conditions from [[statistical mechanics]]. They were first defined by William Mills, [[David P. Robbins|David Robbins]], and Howard Rumsey in the former context.
==Examples==
▲In [[mathematics]], an '''alternating sign matrix''' is a square matrix of 0s, 1s, and −1s such that the sum of each row and column is 1 and the nonzero entries in each row and column alternate in sign. These matrices arise naturally when using [[Dodgson condensation]] to compute a determinant. They are also closely related to the [[six vertex model]] with ___domain wall boundary conditions from [[statistical mechanics]]. They were first defined by William Mills, [[David P. Robbins|David Robbins]], and Howard Rumsey in the former context.
An example of an alternating sign matrix that is not a permutation matrix is
[[File:Matrice signes alternants 4x4.svg|thumbnail|Puzzle picture]]
:<math>
\begin{bmatrix}
Line 14 ⟶ 71:
</math>
==Alternating sign matrix theorem==
The ''alternating sign matrix :<math>
\prod_{k=0}^{n-1}\frac{(3k+1)!}{(n+k)!} = \frac{1!\, 4! \,7! \cdots (3n-2)!}{n!\, (n+1)! \cdots (2n-1)!}.
</math>
The first few terms in this sequence for ''n'' = 0, 1, 2, 3, … are
:1, 1, 2, 7, 42, 429, 7436, 218348, … {{OEIS|id=A005130}}.
This
==Razumov–Stroganov
In 2001, A. Razumov and Y. Stroganov conjectured a connection between O(1) loop model, fully
This conjecture was proved in 2010 by Cantini and Sportiello.<ref>L. Cantini and A. Sportiello, [https://arxiv.org/abs/1003.3376 Proof of the Razumov-Stroganov conjecture]''Journal of Combinatorial Theory, Series A'', '''118 (5)''', (2011) 1549–1574,</ref>
==References
{{reflist}}
* [[David Bressoud|Bressoud, David M.]], ''Proofs and Confirmations'', MAA Spectrum, Mathematical Associations of America, Washington, D.C., 1999.▼
* [[David Bressoud|Bressoud, David M.]] and Propp, James, [http://www.ams.org/notices/199906/fea-bressoud.pdf How the alternating sign matrix conjecture was solved], ''Notices of the American Mathematical Society'', 46 (1999), 637-646.▼
==Further reading==
▲* [[David Bressoud|Bressoud, David M.]], ''Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture'', MAA Spectrum, Mathematical Associations of America, Washington, D.C., 1999.{{ISBN|978-0521666466}}
* Mills, William H., Robbins, David P., and Rumsey, Howard, Jr., Proof of the Macdonald conjecture, ''Inventiones Mathematicae'', 66 (1982), 73-87.▼
▲* [[David Bressoud|Bressoud, David M.]] and Propp, James, [
* Mills, William H., Robbins, David P., and Rumsey, Howard, Jr., Alternating sign matrices and descending plane partitions, ''Journal of Combinatorial Theory, Series A'', 34 (1983), 340-359.▼
▲* Mills, William H., [[David P. Robbins|Robbins, David P.]], and Rumsey, Howard
* Razumov, A.V., Stroganov Yu.G., [http://arxiv.org/abs/cond-mat/0012141 Spin chains and combinatorics], ''Journal of Physics A'', '''34''' (2001), 3185-3190.▼
▲* Mills, William H., [[David P. Robbins|Robbins, David P.]], and Rumsey, Howard
*
▲* Razumov, A. V., Stroganov Yu. G., [
* Robbins, David P., The story of <math>1, 2, 7, 42, 429, 7436, \cdots</math>, ''The Mathematical Intelligencer'', 13 (2), 12-19 (1991).▼
* Razumov, A. V., Stroganov Yu. G., O(1) loop model with different boundary conditions and symmetry classes of alternating-sign matrices], ''Theor. Math. Phys.'', '''142''' (2005), 237–243, {{arxiv|cond-mat/0108103}}
* Zeilberger, Doron, [http://www.combinatorics.org/Volume_3/Abstracts/v3i2r13.html Proof of the alternating sign matrix conjecture], ''[http://www.combinatorics.org/ Electronic Journal of Combinatorics]'' 3 (1996), R13.▼
▲* [[David P. Robbins|Robbins, David P.]], The story of <math>1, 2, 7, 42, 429, 7436, \
▲* [[Doron Zeilberger|Zeilberger, Doron]], [http://
==External links==
* [http://mathworld.wolfram.com/AlternatingSignMatrix.html Alternating sign matrix] entry in [[MathWorld]]
* [http://www.findstat.org/AlternatingSignMatrices Alternating sign matrices] entry in the [http://www.findstat.org/ FindStat] database
{{Matrix classes}}
[[Category:Matrices]]▼
[[Category:Enumerative combinatorics]]▼
▲[[Category:Matrices (mathematics)]]
▲[[Category:Enumerative combinatorics]]
|