Content deleted Content added
Fix typos Tags: Reverted missing file added |
|||
(9 intermediate revisions by 7 users not shown) | |||
Line 1:
{{Short description|Concept in statistics mathematics}}
[[Kernel density estimation]] is a [[nonparametric]] technique for [[density estimation]] i.e., estimation of [[probability density function]]s, which is one of the fundamental questions in [[statistics]]. It can be viewed as a
==Motivation==
We take an illustrative [[Synthetic data|synthetic]] [[bivariate data|bivariate]] data set of 50 points to illustrate the construction of histograms. This requires the choice of an anchor point (the lower left corner of the histogram grid). For the histogram on the left, we choose (−1.5, −1.5): for the one on the right, we shift the anchor point by 0.125 in both directions to (−1.625, −1.625). Both histograms have a binwidth of 0.5, so any differences are due to the change in the anchor point only. The colour-coding indicates the number of data points which fall into a bin: 0=white, 1=pale yellow, 2=bright yellow, 3=orange, 4=red. The left histogram appears to indicate that the upper half has a higher density than the lower half, whereas the reverse is the case for the right-hand histogram, confirming that histograms are highly sensitive to the placement of the anchor point.<ref>{{Cite book | author=Silverman, B.W. | title=Density Estimation for Statistics and Data Analysis | publisher=Chapman & Hall/CRC | year=1986 | isbn=
[[File:Synthetic data 2D histograms.png|thumb|center|500px|alt=Left. Histogram with anchor point at (−1.5, -1.5). Right. Histogram with anchor point at (−1.625, −1.625). Both histograms have a bin width of 0.5, so differences in appearances of the two histograms are due to the placement of the anchor point.|Comparison of 2D histograms. Left. Histogram with anchor point at (−1.5, -1.5). Right. Histogram with anchor point at (−1.625, −1.625). Both histograms have a
One possible solution to this anchor point placement problem is to remove the histogram binning grid completely. In the left figure below, a kernel (represented by the grey lines) is centred at each of the 50 data points above. The result of summing these kernels is given on the right figure, which is a kernel density estimate. The most striking difference between kernel density estimates and histograms is that the former are easier to interpret since they do not contain artifices induced by a binning grid.
Line 24 ⟶ 25:
* <math>K_\mathbf{H}(\mathbf{x})=|\mathbf{H}|^{-1/2}K(\mathbf{H}^{-1/2}\mathbf{x} )</math>.
The choice of the kernel function ''K'' is not crucial to the accuracy of kernel density estimators, so we use the standard [[multivariate normal distribution|multivariate normal]] kernel throughout: <math display="inline">K_\mathbf{H}(\mathbf{x})={(2 \pi)^{-d/2}} \mathbf{|H|}^{-1/2} e^{ -\frac{1}{2}\mathbf{x^T}\mathbf{H^{-1}}\mathbf{x} }</math>, where H plays the role of the [[covariance matrix]]. On the other hand, the choice of the bandwidth matrix <strong>H</strong> is the single most important factor affecting its accuracy since it controls the amount and orientation of smoothing induced.<ref name="WJ1995"
[[File:Kernel
==Optimal bandwidth matrix selection==
Line 95 ⟶ 96:
:<math>\operatorname{MSE} \, \hat{f}(\mathbf{x};\mathbf{H}) = \operatorname{Var} \hat{f}(\mathbf{x};\mathbf{H}) + [\operatorname{E} \hat{f}(\mathbf{x};\mathbf{H}) - f(\mathbf{x})]^2</math>
we have that the MSE tends to 0, implying that the kernel density estimator is (mean square) consistent and hence converges in probability to the true density ''f''. The rate of convergence of the MSE to 0 is the necessarily the same as the MISE rate noted previously ''O''(''n''<sup>−4/(d+4)</sup>), hence the
For the data-based bandwidth selectors considered, the target is the AMISE bandwidth matrix. We say that a data-based selector converges to the AMISE selector at relative rate ''O<sub>p</sub>''(''n''<sup>−''α''</sup>), ''α'' > 0 if
Line 103 ⟶ 104:
It has been established that the plug-in and smoothed cross validation selectors (given a single pilot bandwidth '''G''') both converge at a relative rate of ''O<sub>p</sub>''(''n''<sup>−2/(''d''+6)</sup>) <ref name="DH2005" /><ref>{{Cite journal| doi=10.1016/j.jmva.2004.04.004 | author1=Duong, T. | author2=Hazelton, M.L. | title=Convergence rates for unconstrained bandwidth matrix selectors in multivariate kernel density estimation | journal=Journal of Multivariate Analysis | year=2005 | volume=93 | issue=2 | pages=417–433| doi-access=free }}</ref> i.e., both these data-based selectors are consistent estimators.
[[File:Old Faithful Geyser KDE with plugin bandwidth.png|thumb|250px|alt=Old Faithful Geyser data kernel density estimate with plug-in bandwidth matrix.|Old Faithful Geyser data kernel density estimate with plug-in bandwidth matrix.]]
Line 117 ⟶ 118:
H <- Hpi(x=faithful)
fhat <- kde(x=faithful, H=H)
plot(fhat, display="filled.
</syntaxhighlight>
Line 154:
<syntaxhighlight lang="matlab" style="overflow:auto;">
</syntaxhighlight>
Line 188:
== Objective and data-driven kernel selection ==
[[File:Empirical Characteristic Function.jpg|alt=An x-shaped region of empirical characteristic function in Fourier space.|thumb|Demonstration of the filter function <math>I_{\vec{A}}(\vec{t})</math>. The square of the empirical distribution function <math>|\hat{\varphi}|^2</math> from ''N''=10,000 samples of the ‘transition distribution’ discussed in Section 3.2 (and shown in Fig. 4), for <math>|\hat{\varphi}|^2 \ge 4(N-1)N^{-2}</math>. There are two color schemes present in this figure. The predominantly dark, multicolored colored ‘X-shaped’ region in the center corresponds to values of <math>|\hat{\varphi}|^2</math> for the lowest contiguous hypervolume (the area containing the origin); the colorbar at right applies to colors in this region. The lightly
Recent research has shown that the kernel and its bandwidth can both be optimally and objectively chosen from the input data itself without making any assumptions about the form of the distribution.<ref name=":0">{{Cite journal|last = Bernacchia|first = Alberto|last2 = Pigolotti|first2 = Simone|date = 2011-06-01|title = Self-consistent method for density estimation|journal = Journal of the Royal Statistical Society, Series B|language = en|volume = 73|issue = 3|pages = 407–422|doi = 10.1111/j.1467-9868.2011.00772.x|issn = 1467-9868|arxiv = 0908.3856}}</ref> The resulting kernel density estimate converges rapidly to the true probability distribution as samples are added: at a rate close to the <math>n^{-1}</math> expected for parametric estimators.<ref name=":0" /><ref name=":1">{{Cite journal|last = O’Brien|first = Travis A.|last2 = Collins|first2 = William D.|last3 = Rauscher|first3 = Sara A.|last4 = Ringler|first4 = Todd D.|date = 2014-11-01|title = Reducing the computational cost of the ECF using a nuFFT: A fast and objective probability density estimation method|journal = Computational Statistics & Data Analysis|volume = 79|pages = 222–234|doi = 10.1016/j.csda.2014.06.002|doi-access = free}}</ref><ref name=":22">{{Cite journal|last = O’Brien|first = Travis A.|last2 = Kashinath|first2 = Karthik|last3 = Cavanaugh|first3 = Nicholas R.|last4 = Collins|first4 = William D.|last5 = O’Brien|first5 = John P.|title = A fast and objective multidimensional kernel density estimation method: fastKDE|journal = Computational Statistics & Data Analysis|volume = 101|pages = 148–160|doi = 10.1016/j.csda.2016.02.014|year = 2016|url = https://escholarship.org/content/qt9g56181p/qt9g56181p.pdf?t=p7qvyp|doi-access = free}}</ref> This kernel estimator works for univariate and multivariate samples alike. The optimal kernel is defined in Fourier space—as the optimal damping function <math>\hat{\psi_h}(\vec{t})</math> (the Fourier transform of the kernel <math>\hat{K}(\vec{x})</math> )-- in terms of the Fourier transform of the data <math>\hat{\varphi}(\vec{t})</math>, the ''[[Characteristic function (probability theory)|empirical characteristic function]]'' (see [[Kernel density estimation]]):
Line 197:
where, ''N'' is the number of data points, ''d'' is the number of dimensions (variables), and <math>I_{\vec{A}}(\vec{t})</math> is a filter that is equal to 1 for 'accepted frequencies' and 0 otherwise. There are various ways to define this filter function, and a simple one that works for univariate or multivariate samples is called the 'lowest contiguous hypervolume filter'; <math>I_{\vec{A}}(\vec{t})</math> is chosen such that the only accepted frequencies are a contiguous subset of frequencies surrounding the origin for which <math>|\hat{\varphi}(\vec{t})|^2 \ge 4(N-1)N^{-2}</math> (see <ref name=":22"/> for a discussion of this and other filter functions).
Note that direct calculation of the ''empirical characteristic function'' (ECF) is slow, since it essentially involves a direct Fourier transform of the data samples. However, it has been found that the ECF can be approximated accurately using a [[Non-uniform discrete Fourier transform|non-uniform fast Fourier transform]] (nuFFT) method,<ref name=":1" /><ref name=":22"/> which increases the calculation speed by several orders of magnitude (depending on the dimensionality of the problem). The combination of this objective KDE method and the nuFFT-based ECF approximation has been referred to as ''[https://
[[File:FastKDE_example.jpg|alt=A demonstration of fastKDE relative to a sample PDF. (a) True PDF, (b) a good representation with fastKDE, and (c) a slightly blurry representation.|none|thumb|664x664px|A non-trivial mixture of normal distributions: (a) the underlying PDF, (b) a fastKDE estimate on 1,000,000 samples, and (c) a fastKDE estimate on 10,000 samples.]]
Line 208:
==External links==
* [http://www.mvstat.net/
* [http://www.mathworks.com/matlabcentral/fileexchange/17204-kernel-density-estimation kde2d.m] A [[Matlab]] function for bivariate kernel density estimation.
* [http://libagf.sf.net libagf] A [[C++]] library for multivariate, [[variable bandwidth kernel density estimation]].
|