Content deleted Content added
m Minor corrections/additions to citations to books "WJ1995" and "chacon2018" |
|||
(2 intermediate revisions by 2 users not shown) | |||
Line 1:
{{Short description|Concept in statistics mathematics}}
[[Kernel density estimation]] is a [[nonparametric]] technique for [[density estimation]] i.e., estimation of [[probability density function]]s, which is one of the fundamental questions in [[statistics]]. It can be viewed as a generalisation of [[histogram]] density estimation with improved statistical properties. Apart from histograms, other types of density estimators include [[parametric statistics|parametric]], [[spline interpolation|spline]], [[wavelet]] and [[Fourier series]]. Kernel density estimators were first introduced in the scientific literature for [[univariate]] data in the 1950s and 1960s<ref>{{Cite journal| doi=10.1214/aoms/1177728190 | last=Rosenblatt | first=M.| title=Remarks on some nonparametric estimates of a density function | journal=Annals of Mathematical Statistics | year=1956 | volume=27 | issue=3 | pages=832–837| doi-access=free }}</ref><ref>{{Cite journal| doi=10.1214/aoms/1177704472| last=Parzen | first=E.| title=On estimation of a probability density function and mode | journal=Annals of Mathematical Statistics| year=1962 | volume=33 | issue=3 | pages=1065–1076| doi-access=free }}</ref> and subsequently have been widely adopted. It was soon recognised that analogous estimators for multivariate data would be an important addition to [[multivariate statistics]]. Based on research carried out in the 1990s and 2000s, '''multivariate kernel density estimation''' has reached a level of maturity comparable to its univariate counterparts.<ref name="WJ1995">{{Cite book| author1=Wand, M.P | author2=Jones, M.C. | title=Kernel Smoothing | publisher=Chapman & Hall/CRC | ___location=London | year=1995 | isbn = 9780412552700}}</ref><ref name="simonoff1996">{{Cite book| author=Simonoff, J.S. | title=Smoothing Methods in Statistics | publisher=Springer | year=1996 | isbn=9780387947167}}</ref><ref name="chacon2018">{{Cite book| author=Chacón, J.E. and Duong, T. | title=Multivariate Kernel Smoothing and Its applications | publisher=Chapman & Hall/CRC | year=2018 | isbn=9781498763011}}</ref>
Line 153 ⟶ 154:
<syntaxhighlight lang="matlab" style="overflow:auto;">
</syntaxhighlight>
Line 196 ⟶ 197:
where, ''N'' is the number of data points, ''d'' is the number of dimensions (variables), and <math>I_{\vec{A}}(\vec{t})</math> is a filter that is equal to 1 for 'accepted frequencies' and 0 otherwise. There are various ways to define this filter function, and a simple one that works for univariate or multivariate samples is called the 'lowest contiguous hypervolume filter'; <math>I_{\vec{A}}(\vec{t})</math> is chosen such that the only accepted frequencies are a contiguous subset of frequencies surrounding the origin for which <math>|\hat{\varphi}(\vec{t})|^2 \ge 4(N-1)N^{-2}</math> (see <ref name=":22"/> for a discussion of this and other filter functions).
Note that direct calculation of the ''empirical characteristic function'' (ECF) is slow, since it essentially involves a direct Fourier transform of the data samples. However, it has been found that the ECF can be approximated accurately using a [[Non-uniform discrete Fourier transform|non-uniform fast Fourier transform]] (nuFFT) method,<ref name=":1" /><ref name=":22"/> which increases the calculation speed by several orders of magnitude (depending on the dimensionality of the problem). The combination of this objective KDE method and the nuFFT-based ECF approximation has been referred to as ''[https://
[[File:FastKDE_example.jpg|alt=A demonstration of fastKDE relative to a sample PDF. (a) True PDF, (b) a good representation with fastKDE, and (c) a slightly blurry representation.|none|thumb|664x664px|A non-trivial mixture of normal distributions: (a) the underlying PDF, (b) a fastKDE estimate on 1,000,000 samples, and (c) a fastKDE estimate on 10,000 samples.]]
|