Content deleted Content added
m →Generalisations: rm hyperlink, replace w/ wikilink |
Vince Vatter (talk | contribs) m →History: wikified Einar Steingrímsson |
||
(4 intermediate revisions by 4 users not shown) | |||
Line 5:
In the mathematical field of [[graph theory]], a '''word-representable graph''' is a [[graph (discrete mathematics)|graph]] that can be characterized by a word (or sequence) whose entries alternate in a prescribed way. In particular, if the vertex set of the graph is ''V'', one should be able to choose a word ''w'' over the alphabet ''V'' such that letters ''a'' and ''b'' alternate in ''w'' if and only if the pair ''ab'' is an edge in the graph. (Letters ''a'' and ''b'' '''alternate''' in ''w'' if, after removing from ''w'' all letters but the copies of ''a'' and ''b'', one obtains a word ''abab''... or a word ''baba''....) For example, the [[cycle graph]] labeled by ''a'', ''b'', ''c'' and ''d'' in clock-wise direction is word-representable because it can be represented by ''abdacdbc'': the pairs ''ab'', ''bc'', ''cd'' and ''ad'' alternate, but the pairs ''ac'' and ''bd'' do not.
The word ''w'' is ''G''<nowiki/>'s ''word-representant'', and one says that that ''w'' ''represents'' ''G''. The smallest (by the number of
The definition of a word-representable graph works both in labelled and unlabelled cases since any labelling of a graph is equivalent to any other labelling. Also, the class of word-representable graphs is [[Hereditary property|hereditary]]. Word-representable graphs generalise several important classes of graphs such as [[circle graph]]s, [[Graph coloring|3-colorable graphs]] and [[comparability graph]]s. Various generalisations of the theory of word-representable graphs accommodate representation of ''any'' graph.
Line 11:
==History==
Word-representable graphs were introduced by [[Sergey Kitaev]]<ref>{{cite journal |
==Motivation to study the graphs==
Line 123:
# [https://link.springer.com/chapter/10.1007/978-3-030-28796-2_14 M. Gaetz and C. Ji. Enumeration and Extensions of Word-representants, Combinatorics on words, 180-192, Lecture Notes in Comput. Sci., 11682, Springer, Cham, 2019.]
# [[arxiv:1602.08965|A. Gao, S. Kitaev, and P. Zhang. On 132-representable graphs. Australasian J. Combin. 69 (2017), 105−118.]]
# [[arxiv:1605.01688|M. E. Glen. Colourability and word-representability of near-triangulations, Pure
# M. E. Glen. On word-representability of polyomino triangulations & crown graphs, 2019. PhD thesis, University of Strathclyde.
# [[arxiv:1503.05076|M. E. Glen and S. Kitaev. Word-Representability of Triangulations of Rectangular Polyomino with a Single Domino Tile, J. Combin.Math. Combin. Comput. 100, 131−144, 2017.]]
# [https://www.sciencedirect.com/science/article/pii/S0166218X18301045 M. E. Glen, S. Kitaev, and A. Pyatkin. On the representation number of a crown graph, Discr. Appl. Math. 244, 2018, 89−93.]
# [https://arxiv.org/abs/0810.0310 M.M. Halldórsson, S. Kitaev, A. Pyatkin On representable graphs, semi-transitive orientations, and the representation numbers, arXiv:0810.0310 (2008).]
# [https://web.archive.org/web/20190302114930/http://pdfs.semanticscholar.org/a2df/a4c88505510ea1a7d4357972d9ab24575195.pdf M.M. Halldórsson, S. Kitaev, A. Pyatkin (2010) Graphs capturing alternations in words. In: Y. Gao, H. Lu, S. Seki, S. Yu (eds), Developments in Language Theory. DLT 2010. Lecture Notes Comp. Sci. 6224, Springer, 436−437.]
Line 151:
Software to study word-representable graphs can be found here:
#[http://personal.strath.ac.uk/sergey.kitaev/word-representable-graphs.html M. E. Glen. Software to deal with word-representable graphs, 2017. Available at https://personal.cis.strath.ac.uk/sergey.kitaev/word-representable-graphs.html.]
# [https://www.win.tue.nl/~hzantema/reprnr.html H. Zantema. Software REPRNR to compute the representation number of a graph, 2018. Available at https://www.win.tue.nl/~hzantema/reprnr.html.]
Line 161:
[[Category:Graph families]]
[[Category:NP-complete problems]]
|