Content deleted Content added
m →The Wiener integral: fmt. |
m Added another further reading source |
||
(41 intermediate revisions by 24 users not shown) | |||
Line 1:
{{Short description|Integration over the space of functions}}
{{distinguish|functional integration (neurobiology)}}
'''Functional integration''' is a collection of results in [[mathematics]] and [[physics]] where the
In an ordinary integral (in the sense of [[Lebesgue integration
Functional integration was developed by [[Percy John Daniell]] in
| volume = 20
| issue = 4
Line 20 ⟶ 21:
Functional integration is central to quantization techniques in theoretical physics. The algebraic properties of functional integrals are used to develop series used to calculate properties in [[quantum electrodynamics]] and the [[standard model]] of particle physics.
==Functional
{{Confusing|section|date=January 2014}}
{{
Whereas standard [[Riemann integral|Riemann integration]] sums a function ''f''(''x'') over a continuous range of values of ''x'', functional integration sums a [[functional (mathematics)|functional]] ''G''[''f''], which can be thought of as a "function of a function" over a continuous range (or space) of functions ''f''. Most functional integrals cannot be evaluated exactly but must be evaluated using [[perturbation methods]]. The formal definition of a functional integral is
<math display="block">
\int G[f]\; \mathcal{D}[
:<math>▼
▲\int G[f] [Df] \equiv \int\limits_{-\infty}^\infty \cdots \int\limits_{-\infty}^\infty G[f] \prod_x df(x).
</math>
However, in most cases the functions ''f''(''x'') can be written in terms of an infinite series of [[orthogonal functions]] such as <math>f(x) = f_n H_n(x)</math>, and then the definition becomes
<math display="block">
\int G[f] \; \mathcal{D}[
:<math>▼
▲\int G[f] [Df] \equiv \int\limits_{-\infty}^\infty \cdots \int\limits_{-\infty}^\infty G(f_1, f_2, \ldots) \prod_n df_n,
</math>
which is slightly more understandable. The integral is shown to be a functional integral with a capital
==Examples==
Most functional integrals are actually infinite, but often the limit of the [[quotient]] of two related functional integrals can still be finite.
:<math>
\frac{\displaystyle\int
{\
</math>
in which <math>
By functionally differentiating this with respect to ''J''(''x'') and then setting ''J'' to 0 this becomes an exponential multiplied by a polynomial in ''f''. For example, setting <math>K(x, y) = \Box\delta(x - y)</math>, we find:▼
K(x;y)=K(y;x)
▲</math>. By functionally differentiating this with respect to ''J''(''x'') and then setting
G[f,J]=-\frac{1}{2} \int_{\mathbb{R}}\left[\int_{\mathbb{R}} f(x) K(x;y) f(y)\,dy + J(x) f(x)\right]dx\, \quad,\quad W[J]=\int \exp\lbrace G[f,J]\rbrace\mathcal{D}[f]\;.
</math>
With this notation the first equation can be written as:
\dfrac{W[J]}{W[0]}=\exp\left\lbrace\frac{1}{2}\int_{\mathbb{R}^2} J(x) K^{-1}(x;y) J(y) \,dx\,dy\right\rbrace.
</math>
Now, taking functional derivatives to the definition of <math>
W[J]
</math> and then evaluating in <math>
J=0
</math>, one obtains:
<math>
\dfrac{\delta }{\delta J(a)}W[J]\Bigg|_{J=0}=\int f(a)\exp\lbrace G[f,0]\rbrace\mathcal{D}[f]\;,
</math>
<math>
\dfrac{\delta^2 W[J]}{\delta J(a)\delta J(b)}\Bigg|_{J=0}=\int f(a)f(b)\exp\lbrace G[f,0]\rbrace\mathcal{D}[f]\;,
</math>
<math>
\qquad\qquad\qquad\qquad\vdots
</math>
which is the result anticipated. More over, by using the first equation one arrives to the useful result:
:<math>
\dfrac{\delta^2}{\delta J(a)\delta J(b)}\left(\dfrac{W[J]}{W[0]}\right)\Bigg|_{J=0}=
K^{-1}(a; b)\;;
</math>
Putting these results together and backing to the original notation we have:
<math>
\frac{\displaystyle\int f(a)f(b)\exp\left\lbrace-\frac{1}{2} \int_{\mathbb{R}^2} f(x) K(x;y) f(y)\, dx\,dy\right\rbrace \mathcal{D}[f]}
{\displaystyle\int \exp\left\lbrace-\frac{1}{2} \int_{\mathbb{R}^2} f(x) K(x;y) f(y) \,dx\,dy\right\rbrace \mathcal{D}[f]} =
K^{-1}(a;b)\,.
</math>
:<math>
\int
</math>
which is useful to specify constraints. Functional integrals can also be done over [[Grassmann number|Grassmann-valued]] functions <math>\psi(x)</math>, where <math>\psi(x) \psi(y) = -\psi(y) \psi(x)</math>, which is useful in quantum electrodynamics for calculations involving [[fermions]].
==Approaches to path integrals==
Line 73 ⟶ 109:
In the [[Wiener process|Wiener integral]], a probability is assigned to a class of [[Brownian motion]] paths. The class consists of the paths ''w'' that are known to go through a small region of space at a given time. The passage through different regions of space is assumed independent of each other, and the distance between any two points of the Brownian path is assumed to be [[Normal distribution|Gaussian-distributed]] with a [[variance]] that depends on the time ''t'' and on a diffusion constant ''D'':
:<math>\Pr\big(w(s + t), t \
The probability for the class of paths can be found by multiplying the probabilities of starting in one region and then being at the next. The Wiener measure can be developed by considering the limit of many small regions.
Line 84 ⟶ 120:
* The Kac idea of Wick rotations.
* Using x-dot-dot-squared or i S[x] + x-dot-squared.
* The Cartier
===The Lévy integral===
Line 94 ⟶ 130:
==See also==
*[[Path integral formulation|Feynman path integral]]
*[[Partition function (quantum field theory)]]
*[[Saddle point approximation]]
Line 102 ⟶ 138:
==Further reading==
*[http://www.scholarpedia.org/Path_integral Jean Zinn-Justin (2009), ''Scholarpedia'' '''4'''(2):8674].
* [[Hagen Kleinert|Kleinert, Hagen]], ''Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets'', 4th edition, World Scientific (Singapore, 2004); Paperback {{ISBN
*{{ cite journal|author-link=Nick Laskin|arxiv=0811.1769|doi=10.1103/PhysRevE.62.3135|title=Fractional quantum mechanics|year=2000|last1=Laskin|first1=Nick|journal=Physical Review E|volume=62|issue=3|pages=3135|bibcode = 2000PhRvE..62.3135L }}▼
*{{ cite journal|author-link=Nick Laskin|arxiv=
▲*{{ cite journal|author-link=Nick Laskin|arxiv=
* O. G. Smolyanov, E. T. Shavgulidze. ''Сontinual integrals''. Moscow, Moscow State University Press, 1990. (in Russian). http://lib.mexmat.ru/books/5132▼
*{{SpringerEOM |id=Integral_over_trajectories |title=Integral over trajectories |author-first=R. A. |author-last=Minlos}}
▲* O. G. Smolyanov, E. T. Shavgulidze. ''
*[[Victor Popov]], Functional Integrals in Quantum Field Theory and Statistical Physics, Springer 1983
*[[Sergio Albeverio]], Sonia Mazzucchi, A unified approach to infinite-dimensional integration, Reviews in Mathematical Physics, 28, 1650005 (2016)
*[[John R. Klauder|Klauder, John]]. "[https://www.phys.ufl.edu/functional-integration/ Lectures on Functional Integration]." ''University of Florida.'' [https://web.archive.org/web/20240708182058/http://www.phys.ufl.edu/functional-integration/ Archived] on July 8th, 2024.
[[Category:Integral calculus]]
|