Merge algorithm: Difference between revisions

Content deleted Content added
Application: Explained how the merge algorithm relates to merge sort.
OAbot (talk | contribs)
m Open access bot: arxiv updated in citation with #oabot.
 
(4 intermediate revisions by 3 users not shown)
Line 3:
 
== Application ==
[[File:Merge sort algorithm diagram.svg|thumb|upright=1.5|A graph exemplifying merge sort. Two red arrows starting from the same node indicatedindicate subdivisiona split, while two green arrows ending inat the same node correspondscorrespond to an execution of the merge algorithm.]]
The merge algorithm plays a critical role in the [[merge sort]] algorithm, a [[comparison sort|comparison-based sorting algorithm]]. Conceptually, the merge sort algorithm consists of two steps:
 
Line 126:
There are also algorithms that introduce parallelism within a single instance of merging of two sorted lists. These can be used in field-programmable gate arrays ([[FPGA]]s), specialized sorting circuits, as well as in modern processors with single-instruction multiple-data ([[SIMD]]) instructions.
 
Existing parallel algorithms are based on modifications of the merge part of either the [[bitonic sorter]] or [[odd-even mergesort]].<ref name="flimsj">{{cite journal |last1=Papaphilippou |first1=Philippos |last2=Luk |first2=Wayne |last3=Brooks |first3=Chris |title=FLiMS: a Fast Lightweight 2-way Merger for Sorting |journal=IEEE Transactions on Computers |date=2022 |pages=1–12 |doi=10.1109/TC.2022.3146509|hdl=10044/1/95271 |s2cid=245669103 |hdl-access=free |arxiv=2112.05607 }}</ref> In 2018, Saitoh M. et al. introduced MMS <ref>{{cite book |last1=Saitoh |first1=Makoto |last2=Elsayed |first2=Elsayed A. |last3=Chu |first3=Thiem Van |last4=Mashimo |first4=Susumu |last5=Kise |first5=Kenji |title=2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM) |chapter=A High-Performance and Cost-Effective Hardware Merge Sorter without Feedback Datapath |date=April 2018 |pages=197–204 |doi=10.1109/FCCM.2018.00038|isbn=978-1-5386-5522-1 |s2cid=52195866 }}</ref> for FPGAs, which focused on removing a multi-cycle feedback datapath that prevented efficient pipelining in hardware. Also in 2018, Papaphilippou P. et al. introduced FLiMS <ref name="flimsj" /> that improved the hardware utilization and performance by only requiring <math>\log_2(P)+1</math> pipeline stages of {{math|''P/2''}} compare-and-swap units to merge with a parallelism of {{math|''P''}} elements per FPGA cycle.
 
== Language support ==