Graph factorization: Difference between revisions

Content deleted Content added
Jayy V (talk | contribs)
mNo edit summary
Sowhates (talk | contribs)
 
(10 intermediate revisions by 7 users not shown)
Line 1:
{{Short description|Partition of a graph into spanning subgraphs}}
{{Distinguish|Factor graph}}
 
[[Image:Desargues graph 3color edge.svg|thumb|200px|1-factorization of the [[Desargues graph]]: each color class is a {{nowrap|1-factor}}.]]
[[Image:Petersen-graph-factors.svg|right|thumb|200px|The [[Petersen graph]] can be partitioned into a {{nowrap|1-factor}} (red) and a {{nowrap|2-factor}} (blue). However, the graph is not {{nowrap|1-factorable}}.]]
{{unsolved|mathematics|'''Conjecture:''' If ''n'' is odd and ''k'' ≥ ''n'', then ''G'' is 1-factorable. If ''n'' is even and ''k'' ≥ ''n'' − 1 then ''G'' is 1-factorable.}}
In [[graph theory]], a '''factor''' of a [[graph (discrete mathematics)|graph]] ''G'' is a [[spanning subgraph]], i.e., a subgraph that has the same vertex set as ''G''. A '''''k''-factor''' of a graph is a spanning ''k''-[[Regular graph|regular]] subgraph, and a '''''k''-factorization''' partitions the edges of the graph into disjoint ''k''-factors. A graph ''G'' is said to be '''''k''-factorable''' if it admits a ''k''-factorization. In particular, a '''1-factor''' is a [[perfect matching]], and a 1-factorization of a ''k''-regular graph is a [[edge coloring|proper edge coloring]] with ''k'' colors. A '''2-factor''' is a collection of disjoint [[cycle (graph theory)|cycle]]s that spans all vertices of the graph.
 
==1-factorization==
Line 30 ⟶ 32:
* If ''n'' is odd and ''k'' ≥ ''n'', then ''G'' is 1-factorable. If ''n'' is even and ''k'' ≥ ''n'' − 1 then ''G'' is 1-factorable.
The [[overfull conjecture]] implies the 1-factorization conjecture.
The conjecture was confirmed by Csaba, Kühn, Lo, Osthus and Treglown for sufficiently large ''n''.<ref name="csaba">
{{Citation
| last1 = Csaba
| first1 = Béla
| last2 = Kühn
| first2 = Daniela
| last3 = Lo
| first3 = Allan
| last4 = Osthus
| first4 = Deryk
| last5 = Treglown
| first5 = Andrew
 
| title = Proof of the 1-factorization and Hamilton decomposition conjectures
| journal = Memoirs of the American Mathematical Society
| date = June 2016
| doi = 10.1090/memo/1154
}}
</ref>
 
===Perfect 1-factorization===
Line 81 ⟶ 102:
==2-factorization==
 
If a graph is 2-factorable, then it has to be 2''k''-regular for some integer ''k''. [[Julius Petersen]] showed in 1891 that this necessary condition is also sufficient: [[2-factor theorem|any 2''k''-regular graph is 2-factorable]].<ref>{{harvtxt|Petersen|1891}}, §9, p. 200. {{harvtxt|Harary|1969}}, Theorem 9.9, p. 90. See {{harvtxt|Diestel|2005}}, Corollary 2.1.5, p. 39 for a proof.</ref>
 
If a [[connectivity (graph theory)|connected graph]] is 2''k''-regular and has an even number of edges it may also be ''k''-factored, by choosing each of the two factors to be an alternating subset of the edges of an [[Euler tour]].<ref>{{harvtxt|Petersen|1891}}, §6, p. 198.</ref> This applies only to connected graphs; disconnected [[counterexample]]s include disjoint unions of odd cycles, or of copies of ''K''<sub>2''k''&hairsp;+1</sub>.
 
The [[Oberwolfach problem]] concerns the existence of 2-factorizations of complete graphs into [[graph isomorphism|isomorphic]] subgraphs. It asks for which subgraphs this is possible. This is known when the subgraph is connected (in which case it is a [[Hamiltonian cycle]] and this special case is the problem of [[Hamiltonian decomposition]]) but the general case remains [[open problem|open]].
Line 122 ⟶ 143:
}}.
*{{citation
| last=Diestel | first=Reinhard | author-link = Reinhard Diestel
| title=Graph Theory
| publisher=[[Springer Science+Business Media|Springer]]