Content deleted Content added
m Open access bot: url-access updated in citation with #oabot. |
|||
(32 intermediate revisions by 26 users not shown) | |||
Line 1:
{{Short description|Software system for statistical models}}
{{Use mdy dates|date=September 2015}}
{{primary sources|date=December 2014}}
{{Programming paradigms}}▼
'''Probabilistic programming''' ('''PP''') is a [[programming paradigm]]
| url=http://phys.org/news/2015-04-probabilistic-lines-code-thousands.html
| title=Probabilistic programming does in 50 lines of code what used to take thousands
Line 9:
| date=April 13, 2015
| access-date=2015-04-13 }}
</ref>
== Applications ==
Line 20 ⟶ 18:
The [[Gen (probabilistic programming)|Gen]] probabilistic programming library (also written in Julia) has been applied to vision and robotics tasks.<ref>{{Cite web|url=https://venturebeat.com/2019/06/27/mits-gen-programming-system-allows-users-to-easily-create-computer-vision-statistical-ai-and-robotics-programs/|title=MIT's Gen programming system flattens the learning curve for AI projects|date=2019-06-27|website=VentureBeat|language=en-US|access-date=2019-06-27}}</ref>
More recently, the probabilistic programming system [[Turing (probabilistic programming)|Turing.jl]] has been applied in various pharmaceutical<ref>{{Cite journal|last1=Semenova|first1=Elizaveta|last2=Williams|first2=Dominic P.|last3=Afzal|first3=Avid M.|last4=Lazic|first4=Stanley E.|date=2020-11-01|title=A Bayesian neural network for toxicity prediction|url=https://www.sciencedirect.com/science/article/pii/S2468111320300438|journal=Computational Toxicology|language=en|volume=16|pages=100133|doi=10.1016/j.comtox.2020.100133|s2cid=225362130|issn=2468-1113|url-access=subscription}}</ref> and economics applications.<ref name="pharma-turing">{{Citation|title= Predicting Drug-Induced Liver Injury with Bayesian Machine Learning |year= 2020 |doi= 10.1021/acs.chemrestox.9b00264 |url= https://pubs.acs.org/doi/10.1021/acs.chemrestox.9b00264|last1= Williams |first1= Dominic P. |last2= Lazic |first2= Stanley E. |last3= Foster |first3= Alison J. |last4= Semenova |first4= Elizaveta |last5= Morgan |first5= Paul |journal= Chemical Research in Toxicology |volume= 33 |issue= 1 |pages= 239–248 |pmid= 31535850 |s2cid= 202689667 |url-access= subscription }}</ref>
Probabilistic programming in Julia has also been combined with [[differentiable programming]] by combining the Julia package Zygote.jl with Turing.jl. <ref name="diffprog-zygote">{{cite arXiv|date=2019|title=∂P: A Differentiable Programming System to Bridge Machine Learning and Scientific Computing|eprint=1907.07587|last1=Innes|first1=Mike|last2=Edelman|first2=Alan|last3=Fischer|first3=Keno|last4=Rackauckas|first4=Chris|last5=Saba|first5=Elliot|author6=Viral B Shah|last7=Tebbutt|first7=Will|class=cs.PL }}</ref>
Probabilistic programming
== Probabilistic programming languages ==
PPLs often extend from a basic language
The language for
Several PPLs are in active development, including some in beta test. Two popular tools are Stan and [[PyMC]].<ref>{{Cite web|url=http://blog.fastforwardlabs.com/2017/01/30/the-algorithms-behind-probabilistic-programming.html|title=The Algorithms Behind Probabilistic Programming|access-date=2017-03-10}}</ref>
Line 35:
A PRM is usually developed with a set of algorithms for reducing, inference about and discovery of concerned distributions, which are embedded into the corresponding PRPL.
=== Probabilistic logic programming ===
{{Main|Probabilistic logic programming}}
Probabilistic logic programming is a [[programming paradigm]] that extends [[logic programming]] with probabilities.
Most approaches to probabilistic logic programming are based on the ''distribution semantics,'' which splits a program into a set of probabilistic facts and a logic program. It defines a probability distribution on interpretations of the [[Herbrand structure|Herbrand universe]] of the program.<ref>{{Cite journal |last=De Raedt |first=Luc |last2=Kimmig |first2=Angelika |date=2015-07-01 |title=Probabilistic (logic) programming concepts |url=https://doi.org/10.1007/s10994-015-5494-z |journal=Machine Learning |language=en |volume=100 |issue=1 |pages=5–47 |doi=10.1007/s10994-015-5494-z |issn=1573-0565}}</ref>
=== List of probabilistic programming languages ===
This list summarises the variety of PPLs that are currently available, and clarifies their origins.{{Overly detailed|date=October 2019}}
Line 46 ⟶ 53:
| bayesloop<ref name="bayesloop"/><ref name="bayesloop2"/> || Python || Python
|-
|
|-
| Venture<ref name="Venture"/> || [[Scheme (programming language)|Scheme]] || C++
|-▼
|-▼
|-
| BayesDB<ref name="BAYESDB"/> || [[SQLite]], [[Python (programming language)|Python]] ||
Line 61 ⟶ 62:
|-
| [[Infer.NET]]<ref name="INFET"/> || .NET Framework || .NET Framework
|-
| diff-SAT<ref name="diff-SAT"/> || [[Answer set programming]], [[Boolean satisfiability problem|SAT (DIMACS CNF)]] ||
Line 72 ⟶ 67:
| [[Probabilistic SQL|PSQL]]<ref name="PSQL"/> || [[SQL]] ||
|-
| BUGS<ref name="BUGS"/> || ||Component Pascal
|-
| Dyna<ref name="Dyna"/> || [[Prolog]] ||
|-
| Figaro<ref name="Figaro"/> || Scala ||Scala
|-
| [[ProbLog]]<ref name="ProbLog"/> || Prolog ||Python
Line 98 ⟶ 85:
| ProbCog<ref name="ProbCog"/> || || Java, Python
|-
|-Pomegranate || Python || Cython▼
|-
|-Infergo|| Go || Go
▲|-Pomegranate || Python || Cython
|-
| [[PyMC3|PyMC]]<ref name="PyMC"/> || Python|| Python
Line 122 ⟶ 105:
|-
| WebPPL<ref name="WebPPL"/>||JavaScript||JavaScript
|-
| Picture<ref name="kurzweilai"/>
Line 135 ⟶ 114:
| Julia
|-
| Gen<ref>{{Cite web|url=https://
| [[Julia (programming language)|Julia]]
| [[Julia (programming language)|Julia]]
|-
|Edward<ref>{{Cite web|url=http://edwardlib.org/|title=Edward – Home|website=edwardlib.org|access-date=2017-01-17}}</ref>
Line 154 ⟶ 126:
|Python
|-
|Edward2<ref>{{Cite web|url=https://github.com/
|TensorFlow Probability
|Python
Line 165 ⟶ 137:
|[[Google JAX|JAX]]
|Python
|C++, Python, R▼
|-
|Birch<ref>{{Cite web|url=http://birch-lang.org/|title=Probabilistic Programming in Birch|website=birch-lang.org|access-date=2018-04-20}}</ref>
Line 185 ⟶ 146:
|D
|-
|Blang<ref>{{Cite web
|
|
▲|-
|MultiVerse<ref>{{Citation |last1=Perov |first1=Yura |title=MultiVerse: Causal Reasoning using Importance Sampling in Probabilistic Programming |date=2020-01-28 |arxiv=1910.08091 |last2=Graham |first2=Logan |last3=Gourgoulias |first3=Kostis |last4=Richens |first4=Jonathan G. |last5=Lee |first5=Ciarán M. |last6=Baker |first6=Adam |last7=Johri |first7=Saurabh}}</ref>
|Python
▲|-
|Anglican<ref>{{Cite web |title=The Anglican Probabilistic Programming System |url=https://probprog.github.io/anglican/ |access-date=2024-10-07 |website=probprog.github.io}}</ref>
|[[Clojure]]
|[[Clojure]]
|}
== Difficulty ==
* Reasoning about variables as probability distributions causes difficulties for novice programmers, but these difficulties can be addressed through use of Bayesian network
* As many PPLs rely on the specification of priors on the variables of interest, specifying informed priors is often difficult for novices. In some cases, libraries such as PyMC provide automated methods to find the parameterization of informed priors.<ref>{{Cite web |title=pymc.find_constrained_prior — PyMC dev documentation |url=https://www.pymc.io/projects/docs/en/latest/api/generated/pymc.find_constrained_prior.html |access-date=2024-10-23 |website=www.pymc.io}}</ref>
==See also==
Line 197 ⟶ 168:
* [[Inductive programming]]
* [[Bayesian programming]]
* [[Plate notation]]
==Notes==
{{Reflist|30em|refs=
<ref name="BAYESDB">{{cite web|url=https://github.com/probcomp/bayeslite|title=BayesDB on SQLite. A Bayesian database table for querying the probable implications of data as easily as SQL databases query the data itself|work=GitHub|date=December 26, 2021}}</ref>
<ref name="bayesloop">{{
<ref name="bayesloop2">{{cite web|url=https://github.com/christophmark/bayesloop|title=GitHub -- bayesloop|website=[[GitHub]]|date=December 7, 2021}}</ref>
<ref name="Analytica">{{cite web|url=http://www.analytica.com|title=Analytica-- A Probabilistic Modeling Language|work=lumina.com}}</ref>
<ref name="Venture">{{cite web|url=http://probcomp.csail.mit.edu/venture/|title=Venture -- a general-purpose probabilistic programming platform|work=mit.edu|access-date=September 20, 2014|archive-url=https://web.archive.org/web/20160125130827/http://probcomp.csail.mit.edu/venture/|archive-date=January 25, 2016|url-status=dead}}</ref>
<ref name="PRISM">{{cite web|url=http://rjida.meijo-u.ac.jp/prism/|title=PRISM: PRogramming In Statistical Modeling|website=rjida.meijo-u.ac.jp|access-date=July 8, 2015|archive-url=https://web.archive.org/web/20150301155729/http://rjida.meijo-u.ac.jp/prism/|archive-date=March 1, 2015|url-status=dead}}</ref>
<ref name="INFET">{{cite web|url=http://research.microsoft.com/en-us/um/cambridge/projects/infernet/|title=Infer.NET|publisher=Microsoft|work=microsoft.com}}</ref>
<ref name="diff-SAT">{{cite web|url=https://github.com/MatthiasNickles/diff-SAT/|title=diff-SAT (probabilistic SAT/ASP)|website=[[GitHub]]|date=October 8, 2021}}</ref>
<ref name="PSQL">{{cite journal|title=PSQL: A query language for probabilistic relational data|doi=10.1016/S0169-023X(98)00015-9 | volume=28|journal=Data & Knowledge Engineering|pages=107–120|year = 1998|last1 = Dey|first1 = Debabrata|last2=Sarkar |first2=Sumit }}</ref>
<ref name="BUGS">{{cite web|url=http://www.mrc-bsu.cam.ac.uk/bugs/|title=The BUGS Project - MRC Biostatistics Unit|work=cam.ac.uk|access-date=January 12, 2011|archive-url=https://web.archive.org/web/20140314080841/http://www.mrc-bsu.cam.ac.uk/bugs/|archive-date=March 14, 2014|url-status=dead}}</ref>
<ref name="Dyna">{{cite web|url=http://www.dyna.org/|title=Dyna|website=www.dyna.org|access-date=January 12, 2011|archive-url=https://web.archive.org/web/20160117155947/http://dyna.org/|archive-date=January 17, 2016|url-status=dead}}</ref>
<ref name="Figaro">{{cite web|url=http://www.cra.com/figaro|title=Charles River Analytics - Probabilistic Modeling Services|work=cra.com|date=February 9, 2017}}</ref>
<ref name="ProbLog">{{cite web|url=http://dtai.cs.kuleuven.be/problog|title=ProbLog: Probabilistic Programming|website=dtai.cs.kuleuven.be}}</ref>
<ref name="ProBT">{{cite web|url=http://www.probayes.com/fr/Bayesian-Programming-Book/downloads/|title=ProbaYes - Ensemble, nous valorisations vos données|author=ProbaYes|work=probayes.com|access-date=November 26, 2013|archive-url=https://web.archive.org/web/20160305000751/http://www.probayes.com/fr/Bayesian-Programming-Book/downloads/|archive-date=March 5, 2016|url-status=dead}}</ref>
Line 231 ⟶ 190:
<ref name="BAli-Phy">{{cite web|url=http://www.bali-phy.org/|title=BAli-Phy Home Page|work=bali-phy.org}}</ref>
<ref name="ProbCog">{{cite web|url=https://github.com/opcode81/ProbCog/wiki/Features|title=ProbCog|work=GitHub}}</ref>
<ref name="PyMC">{{cite web|url=https://docs.pymc.io/en/v3/|title=PyMC|author=PyMC devs|work=pymc-devs.github.io}}</ref>
<ref name="Lea">{{cite web|url=https://bitbucket.org/piedenis/lea|title=Lea Home Page|work=bitbucket.org}}</ref>
<ref name="WebPPL">{{cite web|url=http://dippl.org/|title=WebPPL Home Page|work=github.com/probmods/webppl}}</ref>
<ref name="Turingjl">{{cite web|url=https://github.com/yebai/Turing.jl|title=The Turing language for probabilistic programming|website=[[GitHub]]|date=December 28, 2021}}</ref>
<ref name="
}}
== External links ==
*[https://www.cambridge.org/core/books/foundations-of-probabilistic-programming/819623B1B5B33836476618AC0621F0EE Foundations of Probabilistic Programming]
*[http://anyall.org/blog/2009/12/list-of-probabilistic-model-mini-language-toolkits/ List of Probabilistic Model Mini Language Toolkits]
▲{{Programming paradigms navbox}}
[[Category:Probabilistic models]]
|