Functional regression: Difference between revisions

Content deleted Content added
BattyBot (talk | contribs)
top: General fixes, removed orphan tag
OAbot (talk | contribs)
m Open access bot: url-access updated in citation with #oabot.
 
(20 intermediate revisions by 5 users not shown)
Line 1:
{{Short description|Type of regression analysis}}
'''Functional regression''' is a version of [[regression analysis]] when [[Dependent and independent variables|responses]] or [[Dependent and independent variables|covariates]] include [[Functional data analysis|functional data]]. Functional regression models can be classified into four types depending on whether the responses or covariates are functional or scalar: (i) scalar responses with functional covariates, (ii) functional responses with scalar covariates, (iii) functional responses with functional covariates, and (iv) scalar or functional responses with functional and scalar covariates. In addition, functional regression models can be [[Linear regression|linear]], partially linear, or [[Nonlinear regression|nonlinear]]. In particular, functional polynomial models, functional [[Semiparametric regression#Index models|single and multiple index models]] and functional [[additive model]]s are three special cases of functional nonlinear models.
 
Line 17 ⟶ 18:
Adding multiple functional and scalar covariates, model ({{EquationNote|2}}) can be extended to
{{NumBlk|::|<math display="block">Y = \sum_{k=1}^q Z_k\alpha_k + \sum_{j=1}^p \int_{\mathcal{T}_j} X_j^c(t) \beta_j(t) \,dt + \varepsilon,</math>|{{EquationRef|3}}}}
where <math>Z_1,\ldots,Z_q</math> are scalar covariates with <math>Z_1=1</math>, <math>\alpha_1,\ldots,\alpha_q</math> are regression coefficients for <math>Z_1,\ldots,Z_q</math>, respectively, <math>X^c_j</math> is a centered functional covariate given by <math>X_j^c(\cdot) = X_j(\cdot) - \mathbb{E}(X_j(\cdot))</math>, <math>\beta_j</math> is regression coefficient function for <math>X_j^c(\cdot)</math>, and <math>\mathcal{T}_j</math> is the ___domain of <math>X_j</math> and <math>\beta_j</math>, for <math>j=1,\ldots,p</math>. However, due to the parametric component <math>\alpha</math>, the estimation methods for model ({{EquationNote|2}}) cannot be used in this case<ref name=wang:16>{{cite journal|doi=10.1146/annurev-statistics-041715-033624|title=Functional Data Analysis|year=2016|last1=Wang|first1=Jane-Ling|last2=Chiou|first2=Jeng-Min|last3=Müller|first3=Hans-Georg|journal=[[Annual Review of Statistics and Its Application]]|volume=3|issue=1|pages=257–295|bibcode=2016AnRSA...3..257W|url=https://zenodo.org/record/895750|doi-access=free}}</ref> and alternative estimation methods for model ({{EquationNote|3}}) are available.<ref>{{Cite journal |last=Kong, |first=Dehan |last2=Xue, |first2=Kaijie |last3=Yao and|first3=Fang |last4=Zhang (2016)|first4=Hao H. "|date= |title=Partially functional linear regression in high dimensions". ''Biometrika''. '''103''' (1):147&ndash;159. [[Digital object identifier|doi]]:[httpurl=https://doiacademic.orgoup.com/biomet/article-lookup/doi/10.1093/biomet/asv062 |journal=Biometrika |language=en |volume=103 |issue=1 |pages=147–159 |doi=10.1093/biomet/asv062]. |issn=0006-3444|url-access=subscription }}</ref><ref>Hu,{{Cite Wangjournal and|last=Hu Carroll|first=Z. (|date=2004).-06-01 "|title=Profile-kernel versus backfitting in the partially linear models for longitudinal/clustered data". ''Biometrika''. '''91''' (2): 251&ndash;262. [[Digital object identifier|doi]]:[httpurl=https://doiacademic.oup.orgcom/biomet/article-lookup/doi/10.1093/biomet/91.2.251 |journal=Biometrika |language=en |volume=91 |issue=2 |pages=251–262 |doi=10.1093/biomet/91.2.251]. |issn=0006-3444|url-access=subscription }}</ref>
 
=== Functional linear models with functional responses ===
Line 24 ⟶ 25:
where <math>X^c(\cdot) = X(\cdot) - \mathbb{E}(X(\cdot))</math> is still the centered functional covariate, <math>\beta_0(\cdot)</math> and <math>\beta(\cdot,\cdot)</math> are coefficient functions, and <math>\varepsilon(\cdot)</math> is usually assumed to be a random process with mean zero and finite variance. In this case, at any given time <math>t\in\mathcal{T}</math>, the value of <math>Y</math>, i.e., <math>Y(t)</math>, depends on the entire trajectory of <math>X</math>. Model ({{EquationNote|4}}), for any given time <math>t</math>, is an extension of [[multivariate linear regression]] with the inner product in Euclidean space replaced by that in <math>L^2</math>. An estimating equation motivated by multivariate linear regression is
<math display="block">r_{XY} = R_{XX}\beta, \text{ for } \beta\in L^2(\mathcal{S}\times\mathcal{S}),</math>
where <math>r_{XY}(s,t) = \text{cov}(X(s),Y(t))</math>, <math>R_{XX}: L^2(\mathcal{S}\times\mathcal{S}) \rightarrow L^2(\mathcal{S}\times\mathcal{T})</math> is defined as <math>(R_{XX}\beta)(s,t) = \int_\mathcal{S} r_{XX}(s,w)\beta(w,t)dw</math> with <math>r_{XX}(s,w) = \text{cov}(X(s),X(w))</math> for <math>s,w\in\mathcal{S}</math>.<ref name=wang:16/> Regularization is needed and can be done through truncation, <math>L^2</math> penalization or <math>L^1</math> penalization.<ref name=morr:15/> Various estimation methods for model ({{EquationNote|4}}) are available.<ref>{{Cite journal |last=Ramsay and|first=J. O. |last2=Dalzell (1991)|first2=C. "J. |date=1991 |title=Some toolsTools for functionalFunctional dataData analysis"Analysis |url=https://www.jstor.org/stable/2345586 ''|journal=Journal of the Royal Statistical Society. Series B (Methodological)''. '''|volume=53''' (|issue=3):539&ndash;572. https://www.jstor.org/stable/2345586.|pages=539–572 |issn=0035-9246}}</ref><ref>{{Cite journal |last=Yao, |first=Fang |last2=Müller and|first2=Hans-Georg |last3=Wang (2005).|first3=Jane-Ling "|date= |title=Functional linear regression analysis for longitudinal data" |url=https://projecteuclid.org/journals/annals-of-statistics/volume-33/issue-6/Functional-linear-regression-analysis-for-longitudinal-data/10.1214/009053605000000660.full ''|journal=The Annals of Statistics''. '''|volume=33''' (|issue=6):2873&ndash;2903. [[Digital|pages=2873–2903 object identifier|doi]]:[http://doi.org/=10.1214/009053605000000660 10.1214|issn=0090-5364|arxiv=math/009053605000000660].0603132 }}</ref><br />
When <math>X</math> and <math>Y</math> are concurrently observed, i.e., <math>\mathcal{S}=\mathcal{T}</math>,<ref>{{Cite journal |last=Grenander (1950).|first=Ulf "|date= |title=Stochastic processes and statistical inference". ''Arkiv Matematik''. '''1''' (3):195&ndash;277. [[Digital object identifier|doi]]:[httpurl=https://doiprojecteuclid.org/journals/arkiv-for-matematik/volume-1/issue-3/Stochastic-processes-and-statistical-inference/10.1007/BF02590638.full |journal=Arkiv för Matematik |volume=1 |issue=3 |pages=195–277 |doi=10.1007/BF02590638]. |issn=0004-2080}}</ref> it is reasonable to consider a historical functional linear model, where the current value of <math>Y</math> only depends on the history of <math>X</math>, i.e., <math>\beta(s,t)=0</math> for <math>s>t</math> in model ({{EquationNote|4}}).<ref name=wang:16/><ref>{{Cite journal |last=Malfait and|first=Nicole |last2=Ramsay (2003)|first2=James O. "|date=2003 |title=The historical functional linear model" |url=https://onlinelibrary.wiley.com/doi/10.2307/3316063 ''|journal=Canadian Journal of Statistics''. '''|language=en |volume=31''' (|issue=2):115&ndash;128. [[Digital|pages=115–128 object identifier|doi]]:[http://doi.org/=10.2307/3316063 10.2307/3316063].|issn=1708-945X|url-access=subscription }}</ref> A simpler version of the historical functional linear model is the functional concurrent model (see below).<br />
Adding multiple functional covariates, model ({{EquationNote|4}}) can be extended to
{{NumBlk|::|<math display="block">Y(t) = \beta_0(t) + \sum_{j=1}^p\int_{\mathcal{S}_j} \beta_j(s,t) X^c_j(s)\,ds + \varepsilon(t),\ \text{for}\ t\in\mathcal{T},</math>|{{EquationRef|5}}}}
Line 35 ⟶ 36:
Assuming that <math>\mathcal{S} = \mathcal{T}</math>, another model, known as the functional concurrent model, sometimes also referred to as the varying-coefficient model, is of the form
{{NumBlk|::|<math display="block">Y(t) = \alpha_0(t) + \alpha(t)X(t)+\varepsilon(t),\ \text{for}\ t\in\mathcal{T},</math>|{{EquationRef|6}}}}
where <math>\alpha_0</math> and <math>\alpha</math> are coefficient functions. Note that model ({{EquationNote|6}}) assumes the value of <math>Y</math> at time <math>t</math>, i.e., <math>Y(t)</math>, only depends on that of <math>X</math> at the same time, i.e., <math>X(t)</math>. Various estimation methods can be applied to model ({{EquationNote|6}}).<ref>{{Cite journal |last=Fan and|first=Jianqing |last2=Zhang (1999).|first2=Wenyang "|date= |title=Statistical estimation in varying coefficient models" |url=https://projecteuclid.org/journals/annals-of-statistics/volume-27/issue-5/Statistical-estimation-in-varying-coefficient-models/10.1214/aos/1017939139.full ''|journal=The Annals of Statistics''. '''|volume=27''' (|issue=5):1491&ndash;1518. [[Digital|pages=1491–1518 object identifier|doi]]:[http://doi.org/=10.1214/aos/1017939139 10.1214/aos/1017939139].|issn=0090-5364}}</ref><ref>{{Cite journal |last=Huang, |first=Jianhua Z. |last2=Wu and|first2=Colin O. |last3=Zhou (|first3=Lan |date=2004). "|title=Polynomial splineSpline estimationEstimation and inferenceInference for varyingVarying coefficientCoefficient modelsModels with longitudinalLongitudinal data". ''Biometrika''. '''14''' (3):763&ndash;788.Data |url=https://www.jstor.org/stable/24307415. |journal=Statistica Sinica |volume=14 |issue=3 |pages=763–788 |issn=1017-0405}}</ref><ref>{{Cite journal |last=Şentürk and|first=Damla |last2=Müller (|first2=Hans-Georg |date=2010).-09-01 "|title=Functional varyingVarying coefficientCoefficient modelsModels for longitudinalLongitudinal data".Data ''Journal of the American Statistical Association''. '''105''' (491):1256&ndash;1264. [[Digital object identifier|doi]]:[httpurl=https://doiwww.orgtandfonline.com/doi/abs/10.1198/jasa.2010.tm09228 |journal=Journal of the American Statistical Association |doi=10.1198/jasa.2010.tm09228]. |issn=0162-1459|url-access=subscription }}</ref><br />
Adding multiple functional covariates, model ({{EquationNote|6}}) can also be extended to
<math display="block">Y(t) = \alpha_0(t) + \sum_{j=1}^p\alpha_j(t)X_j(t)+\varepsilon(t),\ \text{for}\ t\in\mathcal{T},</math>
Line 42 ⟶ 43:
== Functional nonlinear models ==
=== Functional polynomial models ===
Functional polynomial models are an extension of the FLMs with scalar responses, analogous to extending linear regression to [[polynomial regression]]. For a scalar response <math>Y</math> and a functional covariate <math>X(\cdot)</math> with ___domain <math>\mathcal{T}</math>, the simplest example of functional polynomial models is functional quadratic regression<ref name="yao:10">Yao{{Cite andjournal Müller|last=Yao (2010)|first=F. "Functional|last2=Muller quadratic regression"|first2=H. ''Biometrika''-G. '''97'''|date=2010-03-01 (1):49&ndash;64.|title=Functional [[Digitalquadratic objectregression identifier|doi]]:[httpurl=https://doiacademic.orgoup.com/biomet/article-lookup/doi/10.1093/biomet/asp069 |journal=Biometrika |language=en |volume=97 |issue=1 |pages=49–64 |doi=10.1093/biomet/asp069]. |issn=0006-3444|url-access=subscription }}</ref>
<math display="block">Y = \alpha + \int_\mathcal{T}\beta(t)X^c(t)\,dt + \int_\mathcal{T} \int_\mathcal{T} \gamma(s,t) X^c(s)X^c(t) \,ds\,dt + \varepsilon,</math>
where <math>X^c(\cdot) = X(\cdot) - \mathbb{E}(X(\cdot))</math> is the centered functional covariate, <math>\alpha</math> is a scalar coefficient, <math>\beta(\cdot)</math> and <math>\gamma(\cdot,\cdot)</math> are coefficient functions with domains <math>\mathcal{T}</math> and <math>\mathcal{T}\times\mathcal{T}</math>, respectively, and <math>\varepsilon</math> is a random error with mean zero and finite variance. By analogy to FLMs with scalar responses, estimation of functional polynomial models can be obtained through expanding both the centered covariate <math>X^c</math> and the coefficient functions <math>\beta</math> and <math>\gamma</math> in an orthonormal basis.<ref name=yao:10/>
Line 49 ⟶ 50:
A functional multiple index model is given by
<math display="block">Y = g\left(\int_{\mathcal{T}} X^c(t) \beta_1(t)\,dt, \ldots, \int_{\mathcal{T}} X^c(t) \beta_p(t)\,dt \right) + \varepsilon.</math>
Taking <math>p=1</math> yields a functional single index model. However, for <math>p>1</math>, this model is problematic due to [[curse of dimensionality]]. With <math>p>1</math> and relatively small sample sizes, the estimator given by this model often has large variance.<ref name="chen:11">{{Cite journal |last=Chen, |first=Dong |last2=Hall and|first2=Peter |last3=Müller (2011).|first3=Hans-Georg "|date= |title=Single and multiple index functional regression models with nonparametric link" |url=https://projecteuclid.org/journals/annals-of-statistics/volume-39/issue-3/Single-and-multiple-index-functional-regression-models-with-nonparametric-link/10.1214/11-AOS882.full ''|journal=The Annals of Statistics''. '''|volume=39''' (|issue=3):1720&ndash;1747. [[Digital|pages=1720–1747 object identifier|doi]]:[http://doi.org/=10.1214/11-AOS882 10.1214/11|issn=0090-AOS882]5364|arxiv=1211.5018 }}</ref> An alternative <math>p</math>-component functional multiple index model can be expressed as
<math display="block">Y = g_1\left(\int_{\mathcal{T}} X^c(t) \beta_1(t)\,dt\right)+ \cdots+ g_p\left(\int_{\mathcal{T}} X^c(t) \beta_p(t)\,dt \right) + \varepsilon.</math>
Estimation methods for functional single and multiple index models are available.<ref name=chen:11/><ref>{{Cite journal |last=Jiang and|first=Ci-Ren |last2=Wang (2011).|first2=Jane-Ling "|date= |title=Functional single index models for longitudinal data". '''39''' (1):362&ndash;388. [[Digital object identifier|doi]]:[httpurl=https://doiprojecteuclid.org/journals/annals-of-statistics/volume-39/issue-1/Functional-single-index-models-for-longitudinal-data/10.1214/10-AOS845.full |journal=The Annals of Statistics |volume=39 |issue=1 |pages=362–388 |doi=10.1214/10-AOS845] |issn=0090-5364|arxiv=1103.1726 }}</ref>
 
=== Functional additive models (FAMs) ===
Line 58 ⟶ 59:
One form of FAMs is obtained by replacing the linear function of <math>x_k</math>, i.e., <math>\beta_k x_k</math>, by a general smooth function <math>f_k</math>,
<math display="block">\mathbb{E}(Y|X)=\mathbb{E}(Y) + \sum_{k=1}^\infty f_k(x_k),</math>
where <math>f_k</math> satisfies <math>\mathbb{E}(f_k(x_k))=0</math> for <math>k\in\mathbb{N}</math>.<ref name=wang:16/><ref>{{Cite journal |last=Müller and|first=Hans-Georg |last2=Yao (|first2=Fang |date=2008).-12-01 "|title=Functional additiveAdditive models"Models |url=https://www.tandfonline.com/doi/abs/10.1198/016214508000000751 ''|journal=Journal of the American Statistical Association''. '''103''' (484):1534&ndash;1544. [[Digital object identifier|doi]]:[http://doi.org/=10.1198/016214508000000751 10.1198/016214508000000751].|issn=0162-1459|url-access=subscription }}</ref> Another form of FAMs consists of a sequence of time-additive models:
<math display="block">\mathbb{E}(Y|X(t_1),\ldots,X(t_p))=\sum_{j=1}^p f_j(X(t_j)),</math>
where <math>\{t_1,\ldots,t_p\}</math> is a dense grid on <math>\mathcal{T}</math> with increasing size <math>p\in\mathbb{N}</math>, and <math>f_j(x) = g(t_j,x)</math> with <math>g</math> a smooth function, for <math>j=1,\ldots,p</math><ref name=wang:16/><ref>{{Cite journal |last=Fan, |first=Yingying |last2=James and|first2=Gareth M. |last3=Radchenko (2015).|first3=Peter "|date= |title=Functional additive regression" |url=https://projecteuclid.org/journals/annals-of-statistics/volume-43/issue-5/Functional-additive-regression/10.1214/15-AOS1346.full ''|journal=The Annals of Statistics''. '''|volume=43''' (|issue=5):2296&ndash;2325. [[Digital|pages=2296–2325 object identifier|doi]]:[http://doi.org/=10.1214/15-AOS1346 10.1214/15|issn=0090-AOS1346]5364|arxiv=1510.04064 }}</ref>
 
== Extensions ==